Nav: Home

FUSE pierces the Veil

June 03, 2004

The Veil Nebula, a delicate network of glowing gaseous filaments in the northern constellation of Cygnus the Swan, has long been a favorite of both amateur and professional astronomers. Part of a much larger nebula known as the Cygnus Loop, the Veil is comprised of the leftovers of a star that exploded between 5,000 and 8,000 years ago.

For at least half a century, scientists have probed the Cygnus Loop with various techniques, trying to understand its physical characteristics as a model for comprehending a whole class of similar objects that cannot be observed in such detail. Even with intensive study, however, many of the Loop's basic parameters, such as its distance and the density of its gaseous filaments, have been poorly understood.

But a creative new observation of a star situated behind the Veil Nebula may alter the way scientists think about this supernova remnant. At an American Astronomical Society meeting in Denver this week, astronomers from The Johns Hopkins University will provide confirmation that the Cygnus Loop is closer to Earth than many have thought. These new findings, obtained largely using the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite, have a major impact on the derived properties of this important, prototypical object.

"The key to this result was in finding a background star with sufficient far-ultraviolet output to be observed with FUSE," says William P. Blair, a research professor at The Johns Hopkins University and the principal author of the study.

To identify the candidate star, Blair and his colleagues used an image of the Veil Nebula taken with the Ultraviolet Imaging Telescope on a 1995 space shuttle flight. In the far-ultraviolet, most stars visible at optical wavelengths simply fade away.

"It was a real stroke of luck to find an ultraviolet-bright star located behind the Veil," Blair said.

Late last year, Blair and his colleagues trained FUSE -- a NASA satellite designed at and operated by a team at Johns Hopkins -- on the star, known only as KPD2055+311. The resulting spectrum of the star in ultraviolet light shows many absorption lines, or dips, in light intensity. Some of these dips arise in the star's atmosphere or from cold molecular gas in the interstellar space along the way to the star. But some absorptions, attributable to very hot gas, must arise from the absorption within the Veil Nebula itself.

"Indeed, this confirmed for us that the star is behind the Cygnus Loop," Blair said.

Part two of the story involves the star itself. Blair's group used the observed properties of the star and a model of the star's emission to calculate a distance of 1,860 light years to KPD2055+311. (A light year is the distance light travels in one year, about 6 trillion miles.) Until a few years ago, astronomers placed the Cygnus Loop more than 2,500 light years distant.

In 1999, astronomers using the Hubble Space Telescope revised that estimate to 40 percent closer, or 1,470 light years. Nevertheless, uncertainties and assumptions used in making that estimate left some researchers unpersuaded. Because the star's distance is well determined and it is located behind the Cygnus Loop, it places an upper boundary on the distance and provides an independent confirmation of the shorter distance scale.

According to Blair, the shorter distance makes "a tremendous difference" in the calculated size, age, energy and average expansion velocity of the supernova remnant compared with previous estimates.

"Since we want to use the Cygnus Loop to scale to similar objects, it is important to have an accurate starting point," Blair said. "This observation goes a long way toward improving our understanding of this important object."
-end-
For more information, about this result, including electronic images, go to: http://fuse.pha.jhu.edu/~wpb/cyglpstar.html

THE JOHNS HOPKINS UNIVERSITY
OFFICE OF NEWS AND INFORMATION
901 S. Bond Street, Suite 540
Baltimore, Maryland 21218-3843
Phone: (443) 287-9960 / Fax (443) 287-9920

Johns Hopkins University

Related Astronomers Articles:

Astronomers unveil 'heart' of Eta Carinae
An international team of astronomers has imaged the Eta Carinae star system -- a colossal binary system that consists of two massive stars orbiting each other -- including a region between the two stars in which extremely high-velocity stellar winds are colliding.
Astronomers capture best view ever of disintegrating comet
Astronomers have captured the sharpest, most detailed observations of a comet breaking apart 67 million miles from Earth, using NASA's Hubble Space Telescope.
Astronomers find the first 'wind nebula' around a magnetar
Astronomers have discovered a vast cloud of high-energy particles called a wind nebula around a rare ultra-magnetic neutron star, or magnetar, for the first time.
Astronomers discover 'young Jupiter' exoplanet
The first planet detected by the Gemini Planet Imager is 100 light-years away but shares many of the characteristics of an early Jupiter.
Astronomers discover 'young Jupiter' exoplanet
A team of astronomers that includes University of Georgia professor Inseok Song has discovered a Jupiter-like planet within a young star system that could serve as a decoder ring for understanding how planets formed around the sun.
Astronomers discover 'young Jupiter' exoplanet
An international team of scientists that includes Travis Barman and Katie Morzinski from the University of Arizona has discovered a new exoplanet using the latest planet-hunting tool, the Gemini Planet Imager.
Astronomers discover 'young Jupiter' exoplanet
Astronomers have discovered a Jupiter-like planet within a young system that could serve as a decoder ring for understanding how planets formed around our sun.
Astronomers discover 'young Jupiter' exoplanet
Discovery of a Jupiter-like planet within a young system that could serve as a decoder ring for understanding how planets formed around our Sun.
Astronomers explain why a star is so hot right now
Astronomers have solved a mystery over small, unusually hot blue stars, 10 times hotter than our Sun, that are found in the middle of dense star clusters.
Astronomers unveil the farthest galaxy
An international team of astronomers led by Yale University and the University of California-Santa Cruz have pushed back the cosmic frontier of galaxy exploration to a time when the universe was only 5 percent of its present age.

Related Astronomers Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...