New insight into drug resistance in metastatic melanoma

June 03, 2014

A study by scientists in Manchester has shown how melanoma drugs can cause the cancer to progress once a patient has stopped responding to treatment.

Their findings suggest that using a combination of targeted therapies may be a more effective approach in the clinic.

Melanoma is a form of cancer that develops from melanocytes - the pigment-producing cells in skin. Advanced metastatic melanoma - where the cancer has spread throughout the body - is associated with poor survival, so new treatments are urgently needed.

In about 50% of melanoma cases, the tumour contains a mutation in a gene known as BRAF. Drugs that target BRAF - such as vemurafenib - have increased survival in patients with this mutation. However, many of these patients go on to develop resistance to treatment and their disease returns.

Now researchers from the Cancer Research UK Manchester Institute at The University of Manchester - part of the Manchester Cancer Research Centre - have explored what happens in melanoma cells following inhibition of BRAF.

Professor Richard Marais, who led the research, said: "BRAF inhibitors have improved survival for patients with metastatic melanoma. Unfortunately, eventual drug resistance is preventing long-term cure in most of these patients. We wanted to understand how these drugs might induce unwanted effects in melanoma cells - particularly in cells which also have a mutation in the RAS gene."

The group found that blocking BRAF activity, either using drugs or by altering a cell's genes, led to the RAS-mutated melanoma cells changing shape and becoming more invasive. These changes in behaviour would lead to metastatic spread of the disease throughout the body. Their study, published recently in the journal Science Signaling, showed that the BRAF inhibitors re-activated certain pathways within cells leading to melanoma cells becoming resistant to therapy.

"We found that we could counteract this behaviour by adding a second drug to the BRAF inhibitor - one that targets MEK. It looks like our study further supports the combined use of both BRAF and MEK inhibitors in melanoma patients," added Professor Marais.
-end-


University of Manchester

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.