Nav: Home

Scientists stack algorithms to improve predictions of yield-boosting crop traits

June 03, 2019

Hyperspectral data comprises the full light spectrum; this dataset of continuous spectral information has many applications from understanding the health of the Great Barrier Reef to picking out more productive crop cultivars. To help researchers better predict high-yielding crop traits, a team from the University of Illinois have stacked together six high-powered, machine learning algorithms that are used to interpret hyperspectral data--and they demonstrated that this technique improved the predictive power of a recent study by up to 15 percent, compared to using just one algorithm.

"We are empowering scientists from many fields, who are not necessarily experts in computational analysis, to translate their enormous datasets into beneficial results," said first author Peng Fu, a postdoctoral researcher at Illinois, who led this work for a research project called Realizing Increased Photosynthetic Efficiency (RIPE). "Now scientists do not need to scratch their heads to figure out which machine learning algorithms to use; they can apply six or more algorithms--for the price of one--to make more accurate predictions."

RIPE, which is led by Illinois, is engineering crops to be more productive by improving photosynthesis, the natural process all plants use to convert sunlight into energy and yields. RIPE is supported by the Bill & Melinda Gates Foundation, the U.S. Foundation for Food and Agriculture Research (FFAR), and the U.K. Government's Department for International Development (DFID).

In a recent study, published in Remote Sensing of Environment, the team introduced spectral analysis as a means to quickly identify photosynthetic improvements that could increase yields. In this new study, published in Frontiers in Plant Science, the team improved their previous predictions of photosynthetic capacity by as much as 15 percent using machine learning, where computers automatically applied these six algorithms to their dataset without human help.

"I've loved seeing what's possible when you can use computational power to exploit the data for all its worth," said co-author Katherine Meacham-Hensold, a RIPE postdoctoral researcher at Illinois, who led the previous study in Remote Sensing of Environment. "It's exciting to see what a data analyst like Peng can do with my data. Now other non-data-analyst scientists can test several powerful algorithms to figure out which one will help them leverage their data to the fullest extent."

However, more studies are needed to prove the relevance of this stacked algorithm technique to the plant science community and other fields of study.

"By applying the expertise of data analysts to address the needs of plant physiologists like myself, we ended up refining a technique that is relevant to other hyperspectral datasets," said co-author Carl Bernacchi, a RIPE research leader and scientist with the U.S. Department of Agriculture, Agricultural Research Service, who is based at Illinois' Carl R. Woese Institute for Genomic Biology. "The next step is to test more stacked machine learning algorithms on datasets from many more crop species and explore the utility of this technique to estimate other parameters, such as abiotic stresses from drought or disease."

"As scientists, we should try to use our domain knowledge to explain advanced performance from machine learning methods," said co-author Kaiyu Guan, an assistant professor in Illinois' College of Agriculture, Consumer, and Environmental Sciences (ACES). "Combining computational methods and domain disciplines allows us to possibly unravel what causes the measurable differences in hyperspectral datasets--which is an unsolved mystery in our work and worth future exploration."
-end-
Realizing Increased Photosynthetic Efficiency (RIPE) is engineering staple food crops to more efficiently turn the sun's energy into food to sustainably increase worldwide food productivity, with support from the Bill & Melinda Gates Foundation, the U.S. Foundation for Food and Agriculture Research, and the U.K. Government's Department for International Development.

RIPE is led by the University of Illinois in partnership with The Australian National University, Chinese Academy of Sciences, Commonwealth Scientific and Industrial Research Organisation, Lancaster University, Louisiana State University, University of California, Berkeley, University of Essex, and U.S. Department of Agriculture, Agricultural Research Service.

Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

Related Agriculture Articles:

Urban agriculture only provides small environmental benefits in northeastern US
'Buy local' sounds like a great environmental slogan, epitomized for city dwellers by urban agriculture.
Scientists say agriculture is good for honey bees
Scientists with the University of Tennessee Institute of Agriculture evaluated the impacts of row-crop agriculture, including the traditional use of pesticides, on honey bee health.
Widely accepted vision for agriculture may be inaccurate, misleading
'Food production must double by 2050 to feed the world's growing population.' This truism has been repeated so often in recent years that it has become widely accepted among academics, policymakers and farmers, but now researchers are challenging this assertion and suggesting a new vision for the future of agriculture.
New effort to promote careers in agriculture, natural resources
A new round of grants from the USDA National Institute of Food and Agriculture is designed to promote careers in agriculture and natural resource management, and educators with the University of Tennessee Departments of Plant Sciences and Agricultural Leadership, Education, and Communications (ALEC) are among the grant recipients.
Corn yield modeling towards sustainable agriculture
Researchers use a 16 year field-experiment dataset to show the ability of a model to fine-tune optimal nitrogen fertilizer rates, and identify five ways it can inform nitrogen management guidelines.
More Agriculture News and Agriculture Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...