Nav: Home

Scientists stack algorithms to improve predictions of yield-boosting crop traits

June 03, 2019

Hyperspectral data comprises the full light spectrum; this dataset of continuous spectral information has many applications from understanding the health of the Great Barrier Reef to picking out more productive crop cultivars. To help researchers better predict high-yielding crop traits, a team from the University of Illinois have stacked together six high-powered, machine learning algorithms that are used to interpret hyperspectral data--and they demonstrated that this technique improved the predictive power of a recent study by up to 15 percent, compared to using just one algorithm.

"We are empowering scientists from many fields, who are not necessarily experts in computational analysis, to translate their enormous datasets into beneficial results," said first author Peng Fu, a postdoctoral researcher at Illinois, who led this work for a research project called Realizing Increased Photosynthetic Efficiency (RIPE). "Now scientists do not need to scratch their heads to figure out which machine learning algorithms to use; they can apply six or more algorithms--for the price of one--to make more accurate predictions."

RIPE, which is led by Illinois, is engineering crops to be more productive by improving photosynthesis, the natural process all plants use to convert sunlight into energy and yields. RIPE is supported by the Bill & Melinda Gates Foundation, the U.S. Foundation for Food and Agriculture Research (FFAR), and the U.K. Government's Department for International Development (DFID).

In a recent study, published in Remote Sensing of Environment, the team introduced spectral analysis as a means to quickly identify photosynthetic improvements that could increase yields. In this new study, published in Frontiers in Plant Science, the team improved their previous predictions of photosynthetic capacity by as much as 15 percent using machine learning, where computers automatically applied these six algorithms to their dataset without human help.

"I've loved seeing what's possible when you can use computational power to exploit the data for all its worth," said co-author Katherine Meacham-Hensold, a RIPE postdoctoral researcher at Illinois, who led the previous study in Remote Sensing of Environment. "It's exciting to see what a data analyst like Peng can do with my data. Now other non-data-analyst scientists can test several powerful algorithms to figure out which one will help them leverage their data to the fullest extent."

However, more studies are needed to prove the relevance of this stacked algorithm technique to the plant science community and other fields of study.

"By applying the expertise of data analysts to address the needs of plant physiologists like myself, we ended up refining a technique that is relevant to other hyperspectral datasets," said co-author Carl Bernacchi, a RIPE research leader and scientist with the U.S. Department of Agriculture, Agricultural Research Service, who is based at Illinois' Carl R. Woese Institute for Genomic Biology. "The next step is to test more stacked machine learning algorithms on datasets from many more crop species and explore the utility of this technique to estimate other parameters, such as abiotic stresses from drought or disease."

"As scientists, we should try to use our domain knowledge to explain advanced performance from machine learning methods," said co-author Kaiyu Guan, an assistant professor in Illinois' College of Agriculture, Consumer, and Environmental Sciences (ACES). "Combining computational methods and domain disciplines allows us to possibly unravel what causes the measurable differences in hyperspectral datasets--which is an unsolved mystery in our work and worth future exploration."
-end-
Realizing Increased Photosynthetic Efficiency (RIPE) is engineering staple food crops to more efficiently turn the sun's energy into food to sustainably increase worldwide food productivity, with support from the Bill & Melinda Gates Foundation, the U.S. Foundation for Food and Agriculture Research, and the U.K. Government's Department for International Development.

RIPE is led by the University of Illinois in partnership with The Australian National University, Chinese Academy of Sciences, Commonwealth Scientific and Industrial Research Organisation, Lancaster University, Louisiana State University, University of California, Berkeley, University of Essex, and U.S. Department of Agriculture, Agricultural Research Service.

Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

Related Agriculture Articles:

Digital agriculture paves the road to agricultural sustainability
In a study published in Nature Sustainability, researchers outline how to develop a more sustainable land management system through data collection and stakeholder buy-in.
Comparisons of organic and conventional agriculture need to be better, say researchers
The environmental effects of agriculture and food are hotly debated.
EU agriculture not viable for the future
The current reform proposals of the EU Commission on the Common Agricultural Policy (CAP) are unlikely to improve environmental protection, say researchers led by the German Centre for Integrative Biodiversity Research (iDiv), the Helmholtz Centre for Environmental Research (UFZ) and the University of Göttingen in the journal Science.
Global agriculture: Impending threats to biodiversity
A new study compares the effects of expansion vs. intensification of cropland use on global agricultural markets and biodiversity, and finds that the expansion strategy poses a particularly serious threat to biodiversity in the tropics.
A new vision for genomics in animal agriculture
Iowa State University animal scientists helped to form a blueprint to guide the next decade of animal genomics research.
New pathways for sustainable agriculture
Diversity beats monotony: a colourful patchwork of small, differently used plots can bring advantages to agriculture and nature.
The future of agriculture is computerized
Researchers at the MIT Media Lab Open Agriculture Initiative have used computer algorithms to determine the optimal growing conditions to improve basil plants' taste by maximizing the concentration of flavorful molecules known as volatile compounds.
When yesterday's agriculture feeds today's water pollution
Water quality is threatened by a long history of fertilizer use on land, Canadian scientists find.
How does agriculture affect vulnerable insect-eating birds?
Aerial insectivores -- birds that hunt for insect prey on the wing -- are declining across North America as agricultural intensification leads to diminishing insect abundance and diversity in many areas.
Brazil's Forest Code can balance the needs of agriculture and the environment
If fully implemented, Brazil's Forest Code, an environmental law designed to protect the country's native vegetation and regulate land use, will not prevent growth in Brazilian agriculture, according to new IIASA-led research.
More Agriculture News and Agriculture Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.