Phosphorylation of Regnase-1 lets IL-17 run amok

June 03, 2019

Osaka, Japan - When considering the role of key immune molecule interleukin (IL)-17, the phrase "too much of a good thing" springs to mind. Because unlike some of its more sedate cytokine cousins, which studiously direct the immune response to destroy invading pathogens, IL-17 can get a little carried away. So much so that excess inflammation caused by IL-17 has been implicated in autoimmune disorders such as rheumatoid arthritis, psoriasis, and multiple sclerosis.

It is because of this destructive side of IL-17 that a research team led by Osaka University decided to examine exactly how mRNA-degrading protein Regnase-1 helps rein in the unruly cytokine. In an article published this month in the Journal of Experimental Medicine, the researchers describe how their results could provide some relief for patients suffering from IL-17-associated diseases.

Regnase-1 acts like a pair of scissors, chopping up inflammation-associated gene products so they can't be expressed. By targeting genes turned on in response to inflammation, Regnase-1 prevents the body's immune system from going haywire. However, through a process called phosphorylation, Regnase-1 is modified and thus its activity is abolished, allowing the expression of target genes. While external stimuli were known to activate this modification, previous studies had not determined exactly how phosphorylation occurs.

By altering or deleting Regnase-1 phosphorylation sites in mice, the researchers set about determining why phosphorylation was induced and how this process contributes to the regulation of IL-17-associated inflammation.

Interestingly, the researchers found that IL-17 can trigger the phosphorylation of Regnase-1, resulting in excessive inflammation.

Lead author of the study, Hiroki Tanaka, explains: "Using the mouse models, we showed that Regnase-1 is phosphorylated in response to IL-17 stimulation. The phosphorylated protein is expelled into the cytosol, where it can no longer interact with its target gene products."

This loss of interaction means that the target genes are expressed, causing inflammation. However, the two mutant mouse lines showed a reduction in IL-17-induced inflammation, along with decreased disease severity in an experimental model of autoimmune encephalomyelitis.

"Our results confirm that phosphorylation of Regnase-1 plays an important role in the regulation of various inflammatory responses," says senior author Shizuo Akira. "Based on these findings, we propose that Regnase-1 plays a critical role in the development of IL-17-mediated inflammatory diseases. This is exciting because it means that we may be able to design therapeutic agents that block the phosphorylation of Regnase-1, which may prove effective in the treatment of IL-17-associated autoimmunity."
-end-
The article, "Phosphorylation-dependent Regnase-1 release from endoplasmic reticulum is critical in IL-17 response," was published in the Journal of Experimental Medicine at DOI: 10.1084/jem.20181078

About Osaka University

Osaka University was founded in 1931 as one of the seven imperial universities of Japan and now has expanded to one of Japan's leading comprehensive universities. The University has now embarked on open research revolution from a position as Japan's most innovative university and among the most innovative institutions in the world according to Reuters 2015 Top 100 Innovative Universities and the Nature Index Innovation 2017. The university's ability to innovate from the stage of fundamental research through the creation of useful technology with economic impact stems from its broad disciplinary spectrum.

Website: https://resou.osaka-u.ac.jp/en/top

Osaka University

Related Inflammation Articles from Brightsurf:

3D printed stents that treat inflammation
POSTECH Professor Dong-Woo Cho's research team develops bioink-loaded esophageal stents for treating radiation esophagitis.

New cause of inflammation in people with HIV identified
A new study led by researchers at Boston Medical Center examined what factors could be contributing to this inflammation, and they identified the inability to control HIV RNA production from existing HIV DNA as a potential key driver of inflammation.

Maltreatment tied to higher inflammation in girls
New research by a University of Georgia scientist reveals that girls who are maltreated show higher levels of inflammation at an early age than boys who are maltreated or children who have not experienced abuse.

A protein that controls inflammation
A study by the research team of Prof. Geert van Loo (VIB-UGent Center for Inflammation Research) has unraveled a critical molecular mechanism behind autoimmune and inflammatory diseases such as rheumatoid arthritis, Crohn's disease, and psoriasis.

Inflammation in the brain linked to several forms of dementia
Inflammation in the brain may be more widely implicated in dementias than was previously thought, suggests new research from the University of Cambridge.

Social isolation could cause physical inflammation
Social isolation could be associated with increased inflammation in the body new research from the University of Surrey and Brunel University London has found.

Hydrogels control inflammation to help healing
Researchers test a sampling of synthetic, biocompatible hydrogels to see how tuning them influences the body's inflammatory response.

Why beta-blockers cause skin inflammation
Beta-blockers are often used to treat high blood pressure and other cardiovascular diseases.

The 'inflammation' of opioid use
New research correlates inflammation in the brain and gut to negative emotional state during opioid withdrawal.

Using a common anticonvulsant to counteract inflammation
The interaction between a chromosomal protein called HMGB1 and a cellular receptor called RAGE is known to trigger inflammation.

Read More: Inflammation News and Inflammation Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.