Nav: Home

Major stem cell discovery to boost research into development and regenerative medicine

June 03, 2019

A new approach has enabled researchers to create Expanded Potential Stem Cells (EPSCs) of both pig and human cells. These stem cells have the features of the very first cells in the developing embryo, and can develop into any type of cell. The research from LKS Faculty of Medicine of The University of Hong Kong (HKUMed), the Wellcome Sanger Institute, and the Friedrich-Loeffler-Institut in Germany offers incredible potential for studying human development and regenerative medicine.

The study published in Nature Cell Biology today (3rd June) is the first time scientists have been able to derive stem cells from early pig embryos. Domestic pigs have great potential for biomedical research because of their genetic and anatomical similarities to humans, including comparable organ sizes. Being able to genetically-modify pig stem cells will also be beneficial for animal health and food production.

Stem cells have the ability to develop into other cell types, and existing stem cell lines are already extremely useful for research into development, disease and treatments. However, currently available types of stem cell lines have limitations, and until now it has also not been possible to create embryonic stem cells from pigs and many other farm animals.

Professor Pentao Liu, the leader of the study from the School of Biomedical Sciences and Stem Cell and Regenerative Medicine Consortium, HKUMed, and previously of the Wellcome Sanger Institute, said: "Scientists have been attempting to derive porcine embryonic stem cells for decades without much success. With our Expanded Potential Stem Cell technology, we have now successfully derived and characterised stem cells from porcine preimplantation embryos. We have also established similar human stem cells. Our study represents a significant advance in stem cell research."

Since human EPSCs can produce large numbers of placenta cells - called trophoblasts - they offer new opportunities to investigate pregnancy complications such as pre-eclampsia and miscarriages.

EPSCs come from culturing cells from the earliest stage of development, when the fertilised egg has only divided into 4 or 8 cells and the cells retain some totipotency - the ability to produce all cell types.

Dr Xuefei Gao, a first author on the paper from HKUMed, and previously from the Wellcome Sanger Institute, said: "These EPSC stem cells possess developmental potency that is not generally seen in conventional embryonic or induced pluripotent stem cells. They have the potential to produce all embryonic and extra-embryonic cell lines - including those in the placenta and yolk sac, turning back the development clock to the very earliest cell type. These cells will enable researchers to study early embryonic development, miscarriage and developmental disorders."

The first EPSCs were created in 2017, when the group targeted key molecular pathways during very early development in mice. At these very earliest embryonic developmental stages, mammalian species are very similar and the cells are like a blank sheet of paper. This study has shown that it is possible to use the same approach to create human EPSCs and also to establish EPSCs from pigs - mammals that had previously been elusive to stem cell researchers.

Dr Monika Nowak-Imialek, an author on the paper from the Friedrich-Loeffler-Institut (FLI) in Germany, said: "Our porcine EPSCs isolated from pig embryos are the first well-characterized pig cell lines worldwide. EPSC's great potential to develop into any type of cell provides important implications for developmental biology, regenerative medicine, organ transplantation, disease modeling, and screening for drugs."
-end-
Notes to editors:

Contact details:

Dr Samantha Wynne, Media Officer
Wellcome Sanger Institute
Wellcome Genome Campus
Hinxton, Cambridge, CB10 1SA, UK
Phone: +44 (0)1223 492368
Email: press.office@sanger.ac.uk
The lead Sanger Institute researchers are now based in Hong Kong, but are available for comment.

Evelyn Chan - Hong Kong.
Knowledge Exchange & Faculty Advancement
5/F William MW Mong Block, 21 Sassoon Road, Pokfulam, Hong Kong
Phone +852 3917 9244
Email: evelync@hku.hk

Selected websites:

About LKS Faculty of Medicine, The University of Hong Kong (HKUMed)


The LKS Faculty of Medicine, The University of Hong Kong (HKUMed) is the longest established institution of higher education in Hong Kong. It was founded as the Hong Kong College of Medicine for Chinese by the London Missionary Society in 1887, and was renamed the Hong Kong College of Medicine in 1907.

The Medical Faculty was deemed as the premier Faculty when the University of Hong Kong was established in 1911. Serving Hong Kong for over a century, it has firmly established itself as a medical school of learning, innovation, and enterprising; it is a medical school of moral, vision, and care. Ever since its inception, the Faculty has been playing a pioneering role in medical education, training and research.

From its modest beginnings, the Medical Faculty has now become the largest faculty of the University, with over 400 full-time academic and academic-related staff and over 800 research and research-related support personnel. The undergraduate student population is about 2,900 and the postgraduate student population is about 1,500. The Faculty is comprised of 14 departments, School of Biomedical Sciences, School of Chinese Medicine, School of Nursing, School of Public Health, as well as a number of research centres focusing on various strengths of research. https://www.med.hku.hk/

Friedrich-Loeffler-Institut in Germany

As Federal Research Institute for Animal Health, the Friedrich-Loeffler-Institut (FLI) addresses farm animal health and welfare. The work aims at the prevention, diagnostics and control of animal diseases, the improvement of animal welfare and animal nutrition as well as the preservation and use of farm animal genetic resources. https://www.fli.de/en/home/

The Wellcome Sanger Institute

The Sanger is one of the world's leading genome and biodata institutes. Through its ability to conduct research at scale, it is able to engage in bold and long-term exploratory projects that are designed to influence and empower science globally. Institute research findings, generated through its own research programmes and through its leading role in international consortia, are being used to develop new diagnostics and treatments for human disease and to understand life on Earth. Find out more at http://www.sanger.ac.uk or follow @sangerinstitute

About Wellcome

Wellcome exists to improve health by helping great ideas to thrive. We support researchers, we take on big health challenges, we campaign for better science, and we help everyone get involved with science and health research. We are a politically and financially independent foundation.

Wellcome Trust Sanger Institute

Related Stem Cells Articles:

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.
Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.
New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.
NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.
Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.
In mice, stem cells seem to work in fighting obesity! What about stem cells in humans?
This release aims to summarize the available literature in regard to the effect of Mesenchymal Stem Cells transplantation on obesity and related comorbidities from the animal model.
TSRI researchers identify gene responsible for mesenchymal stem cells' stem-ness'
Researchers at The Scripps Research Institute recently published a study in the journal Cell Death and Differentiation identifying factors crucial to mesenchymal stem cell differentiation, providing insight into how these cells should be studied for clinical purposes.
Stem cells in intestinal lining may shed light on behavior of cancer cells
The lining of the intestines -- the epithelium -- does more than absorb nutrients from your lunch.
More Stem Cells News and Stem Cells Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#544 Prosperity Without Growth
The societies we live in are organised around growth, objects, and driving forward a constantly expanding economy as benchmarks of success and prosperity. But this growing consumption at all costs is at odds with our understanding of what our planet can support. How do we lower the environmental impact of economic activity? How do we redefine success and prosperity separate from GDP, which politicians and governments have focused on for decades? We speak with ecological economist Tim Jackson, Professor of Sustainable Development at the University of Surrey, Director of the Centre for the Understanding of Sustainable Propserity, and author of...
Now Playing: Radiolab

An Announcement from Radiolab