Nav: Home

Texas A&M research team develops bioinks to print therapeutics in 3D

June 03, 2019

A team of researchers at Texas A&M University has developed an innovative way to print therapeutics in 3D for regenerative medicine.

3D bioprinting is emerging as a promising method for rapidly fabricating cell-containing constructs for designing new, healthy, functional tissues. However, one of the major challenges in 3D bioprinting is lack of control over cellular functions. Growth factors, which are a special class of proteins, can direct cellular fate and functions. However, these growth factors cannot be easily incorporated within a 3D-printed structure for a prolonged duration.

In a recent study conducted at Texas A&M, researchers in Dr. Akhilesh K Gaharwar's lab in the Department of Biomedical Engineering formulated a bioink consisting of 2D mineral nanoparticles to sequester and 3D print therapeutics at precise locations. Their findings were published in Advanced Healthcare Materials.

The team has designed a new class of hydrogel bioinks -- 3D structures that can absorb and retain considerable amounts of water -- loaded with therapeutic proteins. This bioink is made from an inert polymer, polyethylene glycol (PEG), and is advantageous for tissue engineering because it does not provoke the immune system. However, due to low viscosity of the PEG polymer solution, it is difficult to 3D print this type of polymer. To overcome this limitation, the team has found that combining PEG polymers with nanoparticles leads to an interesting class of bioink hydrogels that can support cell growth and may have enhanced printability compared to polymer hydrogels by themselves.

This new technology, based on a nanoclay platform developed by Gaharwar, assistant professor, can be used for precise deposition of protein therapeutics. This bioink formulation has unique shear-thinning properties that allow the material to be injected, quickly stop flowing and then cure to stay in place, which is highly desirable for 3D bioprinting applications.

"This formulation using nanoclay sequesters the therapeutic of interest for increased cell activity and proliferation," said Dr. Charles W. Peak, senior author on the study. "In addition, the prolonged delivery of the bioactive therapeutic could improve cell migration within 3D printed scaffolds and can help in rapid vascularization of scaffolds."

Gaharwar said the prolonged delivery of the therapeutic could also reduce overall costs by decreasing the therapeutic concentration as well as minimizing the negative side effects associated with supraphysiological doses.

"Overall, this study provides proof of principle to print protein therapeutics in 3D that can be used to control and direct cell functions," he said.
-end-


Texas A&M University

Related Polymer Articles:

World first: New polymer goes for a walk when illuminated
Scientists have developed a new material that can undulate and therefore propel itself forward under the influence of light.
Polymer-coated silicon nanosheets -- an alternative to graphene
Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene.
New polymer additive could revolutionize plastics recycling
Only 2 percent of the 78 million tons of manufactured plastics are currently recycled into similar products because polyethylene (PE) and polypropylene (PP), which account for two-thirds of the world's plastics, have different chemical structures and cannot be efficiently repurposed together.
Responsive filtration membranes by polymer self-assembly
Polymer self-assembly is a crucial tool for manufacturing membranes using scalable methods, enabling easier commercialization.
Biodegradable polymer coating for implants
Medical implants often carry surface substrates that release active substances or to which biomolecules or cells can adhere better.
Praise for polymer science
Engineer Glenn Fredrickson receives the William H. Walker Award for Excellence in Contributions to Chemical Engineering Literature.
When it comes to polymer fragility, size does matter
By combining a number of tools and techniques, a team of researchers from the US, Italy and China was able to find a more complete picture of the glass transition phenomenon in polymers and to point out where the polymers differ from small molecular liquids.
Better, stronger: Polymer breakthrough to improve things we use everyday
Medicine, mobile phones, computers and clothes could all be enhanced using the process for making paint, according to research by the University of Warwick.
CWRU researcher scaling up knotty polymer research
Researchers at Case Western Reserve University developed a technique that produces a long chain molecule in the shape of a trefoil knot.
New 3-D printed polymer can convert methane to methanol
Lawrence Livermore National Laboratory scientists have combined biology and 3-D printing to create the first reactor that can continuously produce methanol from methane at room temperature and pressure.

Related Polymer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...