Nav: Home

Researchers develop new method to gauge atmosphere's ability to clear methane

June 03, 2019

New research by UMBC's Glenn Wolfe and collaborators is shaping how scientists understand the fate of methane, a potent greenhouse gas, in Earth's atmosphere.

Of the greenhouse gases, methane has the third greatest overall effect on climate after carbon dioxide and water vapor. And the longer it stays in the atmosphere, the more heat it traps. That's why it's essential for climate models to properly represent how long methane lasts before it's broken down. That happens when a methane molecule reacts with a hydroxyl radical---an oxygen atom bound to a hydrogen atom, represented as OH---in a process called oxidation. Hydroxyl radicals also destroy other hazardous air pollutants.

"OH is really the most central oxidizing agent in the lower atmosphere. It controls the lifetime of nearly every reactive gas," explains Wolfe, an assistant research professor at UMBC's Joint Center for Earth Systems Technology. However, "globally, we don't have a way to directly measure OH." More than that, it's well understood that current climate models struggle to accurately simulate OH. With existing methods, scientists can infer OH at a coarse scale, but there is scant information on the where, when, and why of variations in OH.

New research published in Proceedings of the National Academy of Sciences and led by Wolfe puts scientists on the path to changing that. Wolfe and colleagues have developed a unique way to infer how global OH concentrations vary over time and in different regions. Better understanding of OH levels can help scientists understand how much of the ups and downs in global methane levels are due to changing emissions, such as from oil and natural gas production or wetlands, versus being caused by changing levels of OH.

A flying laboratory

NASA satellites have been measuring atmospheric formaldehyde concentrations for over 15 years. Wolfe's new research relies on that data, plus new observations collected during NASA's recent Atmospheric Tomography (ATom) mission. ATom has flown four around-the-world circuits, sampling air with the aid of a NASA research aircraft.

This "flying laboratory," as Wolfe describes it, collected data on atmospheric formaldehyde and OH levels that illustrates a remarkably simple relationship between the two gases. This did not surprise the scientists, because formaldehyde is a major byproduct of methane oxidation, but this study provides the first concrete observation of the correlation between formaldehyde and OH. The findings also showed that the formaldehyde concentrations the plane measured are consistent with those measured by the satellites. That will allow Wolfe's team and others to use existing satellite data to infer OH levels throughout most of the atmosphere.

"So the airborne measurements give you a ground truth that that relationship exists," Wolfe says, "and the satellite measurements let you extend that relationship around the whole globe."

Wolfe, however, is the first to acknowledge that the work to improve global models is far from done. The airplane measured OH and formaldehyde levels over the open ocean, where the air chemistry is relatively simple. It would be more complicated over a forest, and even more so over a city.

While the relationship the researchers determined provides a solid baseline, as most of Earth's air does, indeed, float above oceans, more work is needed to see how OH levels differ in more complex environments. Potentially, different data from existing NASA satellites, such as those tracking emissions from urban areas or wildfires, could help.

Wolfe hopes to keep refining this work, which he says is at "the nexus of the chemistry and climate research communities. And they're very interested in getting OH right."

Getting it right

The current study did consider seasonal variations in OH, by analyzing measurements taken in February and August. "The seasonality is one aspect of this study that's important," Wolfe says, "because the latitude where OH is at its maximum moves around." Considering seasonal shifts in OH concentrations, or even multi-year shifts caused by phenomena like El Niño and La Niña, could be one angle to explore when trying to improve global climate models.

Looking further at OH levels on a global scale using satellite data validated by airplane data could also help scientists refine their models. "You can use the spatial variability and the seasonality to understand at the process level what's driving OH, and then ask if the model gets that right or not," Wolfe says. "The idea is to be able to poke at all these features, where we haven't really had any data to do that with before."

This new research is one step in the journey to enhancing our understanding of the global climate, even as it is rapidly changing. More accurately understanding how, for example, cutting methane emissions would affect the climate, and how quickly, could even influence policy decisions.

"It's not perfect. It needs work," Wolfe says. "But the potential is there."
-end-


University of Maryland Baltimore County

Related Methane Articles:

Microbial fuel cell converts methane to electricity
Transporting methane from gas wellheads to market provides multiple opportunities for this greenhouse gas to leak into the atmosphere.
Methane seeps in the Canadian high Arctic
Cretaceous climate warming led to a significant methane release from the seafloor, indicating potential for similar destabilization of gas hydrates under modern global warming.
Methane emissions from trees
A new study from the University of Delaware is one of the first in the world to show that tree trunks in upland forests actually emit methane rather than store it, representing a new, previously unaccounted source of this powerful greenhouse gas.
Oil production releases more methane than previously thought
Emissions of methane and ethane from oil production have been substantially higher than previously estimated, particularly before 2005.
Bursts of methane may have warmed early Mars
The presence of water on ancient Mars is a paradox.
New method for quantifying methane emissions from manure management
The EU Commision requires Denmark to reduce drastically emissions of greenhouse gases from agriculture.
New 3-D printed polymer can convert methane to methanol
Lawrence Livermore National Laboratory scientists have combined biology and 3-D printing to create the first reactor that can continuously produce methanol from methane at room temperature and pressure.
Arctic Ocean methane does not reach the atmosphere
250 methane flares release the climate gas methane from the seabed and into the Arctic Ocean.
Long-sought methane production mechanism identified
Researchers have identified the mechanism by which bacteria create methane, a potent greenhouse gas.
Retreat of the ice followed by millennia of methane release
Methane was seeping from the seafloor for thousands of years following the retreat of the Barents Sea ice sheet, shows a groundbreaking new study in Nature Communications.

Related Methane Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...