Neurobiology of Disease publishes results of AFFiRiS' antibody mAB C6-17 in Huntington's

June 03, 2020

Vienna, Austria, June 3, 2020 - AFFiRiS, a clinical-stage biotechnology company developing novel disease-modifying specific active immunotherapies (SAITs), today announced that detailed preclinical results with its monoclonal antibody mAB C6-17 to treat Huntington's Disease (HD) were published in the peer-reviewed journal Neurobiology of Disease.

Huntington's disease (HD) is a hereditary neurodegenerative disorder characterized by changes in personality, impairments in cognition and loss of motor function, leading to death over a period of 10 to 30 years. The disease is caused by a highly polymorphic CAG trinucleotide expansion in the gene encoding for the huntingtin protein (HTT). The resulting mutant huntingtin protein (mutHTT) is ubiquitously expressed but also exhibits the ability to propagate from cell-to-cell to disseminate pathology; a property, which may serve as a new therapeutic focus and suggest that immunotherapy may provide a viable approach to neutralize mutHTT in the extracellular space.

Accordingly, AFFiRiS set out to develop a monoclonal antibody (mAB) targeting a particularly exposed region of the HTT protein. The results published in Neurobiology of Disease show that this monoclonal antibody, designated C6-17 effectively binds mutHTT and is able to deplete the protein from cell culture supernatants. Using cell-based assays, AFFiRiS demonstrated that extracellular secretion of mutHTT into cell culture media and its subsequent uptake in recipient HeLa cells can be almost entirely blocked by mAB C6-17. Immunohistochemical stainings of post-mortem HD brain tissue confirmed the specificity of mAB C6-17 to human mutHTT aggregates.

Günther Staffler, PhD, Chief Technology Officer of AFFiRiS AG, comments: "New therapies for Huntington's disease are urgently needed to address the root cause of this debilitating disease. Our findings demonstrate that mAB C6-17 not only successfully engages with its target, mutHTT, but also inhibits cell uptake. This suggests that the antibody could interfere with the pathological processes of mutHTT spreading in vivo. These results validate our HTT/mutHTT targeting monoclonal antibody that could ultimately be used as passive immunotherapy to treat features of Huntington's disease."

The majority of current preclinical and clinical mutHTT lowering strategies are based on gene silencing such as micro ribonucleic acids (miRNA) and anti-sense oligonucleotides (ASOs). These strategies are geared towards targeting mutHTT expression in the brain to interfere with the abnormal protein directly within neurons. However, mutHTT is ubiquitously expressed and antibodies would allow targeting of extracellular mutHTT throughout the body (brain and peripheral organs, tissues and plasma). This would be one of the most attractive features of this therapeutic approach.

"Previous reports indicate that the ability of peripheral antibodies to enter the brain is limited. However, considering that the peripheral nervous system can impact the central nervous system, our antibody may have the capacity to exert some beneficial effect on the brain as well, by influencing mutHTT levels in the periphery", says Noel Barrett, PhD, CEO of AFFiRiS AG. "Additionally, combining our antibodies with intracellularly acting ASO or miRNA could provide us with a two-pronged therapy that can simultaneously tackle both intra and extracellular mutHTT. Antibody-based interventions have been demonstrated to be safe and straightforward in application and handling. As such we foresee that antibodies, such as our lead antibody C6-17, could pioneer a new therapeutic strategy for reducing extracellular mutHTT, giving hope to patients suffering from this extremely serious and difficult to treat disease."
-end-
About AFFiRiS AG: AFFiRiS is a clinical-stage biotechnology company located in Vienna, Austria, with a vision of using the immune system to identify and target human proteins central to the development and progression of neurodegenerative diseases, based on its proprietary patented AFFITOME® technology. The Company's ultimate goal is to improve the lives of patients suffering from these diseases by providing disease-modifying specific active immunotherapies (SAIT). With its lead candidate AFFITOPE® PD01, AFFiRiS is the leader in active immunotherapies for Parkinson's disease. AFFiRiS' programs against multiple system atrophy, dementia with Lewy bodies, and chorea Huntington are in pre-clinical development. For further information, please visit http://www.affiris.com and follow us on LinkedIn and Twitter.

Contact AFFiRiS AG: Media contact:

Dr. Cornelia Kutzer MC Services
E cornelia.kutzer@affiris.com Julia Hofmann
W http://www.affiris.com P +49 89 210228 0
E affiris@mc-services.eu

About SAIT:https://affiris.com/approach/#overview-of-sait

About neurodegenerative diseases:https://affiris.com/neurodegenerative-diseases/

About Huntington disease:https://affiris.com/neurodegenerative-diseases/#huntingtons-disease

MC Services AG

Related Antibodies Articles from Brightsurf:

Scientist develops new way to test for COVID-19 antibodies
New research details how a cell-free test rapidly detects COVID-19 neutralizing antibodies and could aid in vaccine testing and drug discovery efforts.

Mussels connect antibodies to treat cancer
POSTECH research team develops innovative local anticancer immunotherapy technology using mussel protein.

For an effective COVID vaccine, look beyond antibodies to T-cells
Most vaccine developers are aiming solely for a robust antibody response against the SARS-CoV-2 virus, despite evidence that antibodies are not the body's primary protective response to infection by coronaviruses, says Marc Hellerstein of UC Berkeley.

Children can have COVID-19 antibodies and virus in their system simultaneously
With many questions remaining around how children spread COVID-19, Children's National Hospital researchers set out to improve the understanding of how long it takes pediatric patients with the virus to clear it from their systems, and at what point they start to make antibodies that work against the coronavirus.

The behavior of therapeutic antibodies in immunotherapy
Since the late 1990s, immunotherapy has been the frontline treatment against lymphomas where synthetic antibodies are used to stop the proliferation of cancerous white blood cells.

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Seroprevalence of antibodies to SARS-CoV-2 in 10 US sites
This study estimates how common SARS-CoV-2 antibodies are in convenience samples from 10 geographic sites in the United States.

Neutralizing antibodies in the battle against COVID-19
An important line of defense against SARS-CoV-2 is the formation of neutralizing antibodies.

Three new studies identify neutralizing antibodies against SARS-CoV-2
A trio of papers describes several newly discovered human antibodies that target the SARS-CoV-2 virus, isolated from survivors of SARS-CoV-2 and SARS-CoV infection.

More effective human antibodies possible with chicken cells
Antibodies for potential use as medicines can be made rapidly in chicken cells grown in laboratories.

Read More: Antibodies News and Antibodies Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.