Nav: Home

Pushing photons

June 03, 2020

UC Santa Barbara researchers continue to push the boundaries of LED design a little further with a new method that could pave the way toward more efficient and versatile LED display and lighting technology.

In a paper published in Nature Photonics, UCSB electrical and computer engineering professor Jonathan Schuller and collaborators describe this new approach, which could allow a wide variety of LED devices -- from virtual reality headsets to automotive lighting -- to become more sophisticated and sleeker at the same time.

"What we showed is a new kind of photonic architecture that not only allows you to extract more photons, but also to direct them where you want," said Schuller. This improved performance, he explained, is achieved without the external packaging components that are often used to manipulate the light emitted by LEDs.

Light in LEDs is generated in the semiconductor material when excited, negatively charged electrons traveling along the semiconductor's crystal lattice meet positively-charged holes (an absence of electrons) and transition to a lower state of energy, releasing a photon along the way. Over the course of their measurements, the researchers found that a significant amount of these photons were being generated but were not making it out of the LED.

"We realized that if you looked at the angular distribution of the emitted photon before patterning, it tended to peak at a certain direction that would normally be trapped within the LED structure," Schuller said. "And so we realized that you could design around that normally trapped light using traditional metasurface concepts."

The design they settled upon consists of an array of 1.45-micrometer long gallium nitride (GaN) nanorods on a sapphire substrate, in which quantum wells of indium gallium nitride were embedded, to confine electrons and holes and thus emit light. In addition to allowing more light to leave the semiconductor structure, the process polarizes the light, which co-lead author Prasad Iyer said, "is critical for a lot of applications."

Nanoscale Antennae

The idea for the project came to Iyer a couple of years ago as he was completing his doctorate in Schuller's lab, where the research is focused on photonics technology and optical phenomena at subwavelength scales. Metasurfaces -- engineered surfaces with nanoscale features that interact with light -- were the focus of his research.

"A metasurface is essentially a subwavelength array of antennas," said Iyer, who previously was researching how to steer laser beams with metasurfaces. He understood that typical metasurfaces rely on the highly directional properties of the incoming laser beam to produce a highly directed outgoing beam.

LEDs, on the other hand, emit spontaneous light, as opposed to the laser's stimulated, coherent light.

"Spontaneous emission samples all the possible ways the photon is allowed to go," Schuller explained, so the light appears as a spray of photons traveling in all possible directions. The question was could they, through careful nanoscale design and fabrication of the semiconductor surface, herd the generated photons in a desired direction?

"People have done patterning of LEDs previously," Iyer said, but those efforts invariably split the into multiple directions, with low efficiency. "Nobody had engineered a way to control the emission of light from an LED into a single direction."

Right Place, Right Time

It was a puzzle that would not have found a solution, Iyer said, without the help of a team of expert collaborators. GaN is exceptionally difficult to work with and requires specialized processes to make high-quality crystals. Only a few places in the world have the expertise to fabricate the material in such exacting design.

Fortunately, UC Santa Barbara, home to the Solid State Lighting and Energy Electronics Center (SSLEEC), is one of those places. With the expertise at SSLEEC and the campus's world-class nanofabrication facility, the researchers designed and patterned the semiconductor surface to adapt the metasurface concept for spontaneous light emission.

"We were very fortunate to collaborate with the world experts in making these things," Schuller said.
-end-
Research on this project also was conducted by Ryan A. DeCrescent (co-lead author), Yahya Mohtashami, Guillaume Lhereux, Nikita Butakov, Abdullah Alhassan, Claude Weisbuch, Shuji Nakamura and Steven P. DenBaars, all from UCSB.

University of California - Santa Barbara

Related Semiconductor Articles:

Laser allows solid-state refrigeration of a semiconductor material
A team from the University of Washington used an infrared laser to cool a solid semiconductor by at least 20 degrees C, or 36 F, below room temperature, as they report in a paper published June 23 in Nature Communications.
Scientists create smallest semiconductor laser
An international team of researchers announced the development of the world's most compact semiconductor laser that works in the visible range at room temperature.
Clemson researcher's novel MOF is potential next-gen semiconductor
Clemson professor Sourav Saha demonstrated a novel double-helical metal organic framework architecture in a partially oxidized form that conducts electricity, potentially making it a next-generation semiconductor.
A gold butterfly can make its own semiconductor skin
A nanoscale gold butterfly provides a more precise route for growing/synthesizing nanosized semiconductors that can be used in nano-lasers and other applications.
Scientists pioneer new generation of semiconductor neutron detector
In a new study, scientists have developed a new type of semiconductor neutron detector that boosts detection rates by reducing the number of steps involved in neutron capture and transduction.
Scientists see defects in potential new semiconductor
A research team has reported seeing, for the first time, atomic scale defects that dictate the properties of a new and powerful semiconductor.
Bending an organic semiconductor can boost electrical flow
Slightly bending semiconductors made of organic materials can roughly double the speed of electricity flowing through them and could benefit next-generation electronics such as sensors and solar cells, according to Rutgers-led research.
Paving a way to achieve unexplored semiconductor nanostructures
A research team of Ehime University paved a way to achieve unexplored III-V semiconductor nanostructures.
Clarification of a new synthesis mechanism of semiconductor atomic sheet
Researchers at Tohoku University in Japan succeeded in clarifying a new synthesis mechanism regarding transition metal dichalcogenides (TMD), which are semiconductor atomic sheets having thickness in atomic order.
Future of portable electronics -- Novel organic semiconductor with exciting properties
Organic semiconductors have advantages over inorganic semiconductors in several areas.
More Semiconductor News and Semiconductor Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: IRL Online
Original broadcast date: March 20, 2020. Our online lives are now entirely interwoven with our real lives. But the laws that govern real life don't apply online. This hour, TED speakers explore rules to navigate this vast virtual space.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Falling
There are so many ways to fall–in love, asleep, even flat on your face. This hour, Radiolab dives into stories of great falls.  We jump into a black hole, take a trip over Niagara Falls, upend some myths about falling cats, and plunge into our favorite songs about falling. Support Radiolab by becoming a member today at Radiolab.org/donate.