Nav: Home

'Kiss-and-run' rules the inner lives of neurons

June 04, 2003

Neurons transmit chemical signals in a fleeting "kiss-and-run" process, which in large part determines how quickly neurons can fire, according to new studies by Howard Hughes Medical Institute researchers.

The transfer of information between nerve cells occurs when chemicals called neurotransmitters are released into the synapse, the junction between neurons. Electrical impulses in the neuron cause tiny vesicles loaded with neurotransmitters to move to the tip of the nerve terminal where they are released.

In an article published in the June 5, 2003, issue of the journal Nature, HHMI investigator Charles F. Stevens and Sunil Gandhi, both at The Salk Institute, reported that they have devised a technique that permits them to visualize individual vesicles after they have released their cargo. The new findings are significant, said the researchers, because they answer questions about the rate at which synaptic vesicles can be recycled. This rate determines how much information nerve cells can transmit.

Stevens and Gandhi have identified three distinct ways in which a used vesicle can be retrieved from the surface of the nerve cell once it has released its cargo. The fastest of these, called the "kiss-and-run" mode, takes less than a second; the slower "compensatory" mode takes up to 21 seconds; and the "stranded" mode leaves the vesicle stuck at the surface until the next nerve impulse triggers its retrieval.

According to Stevens, the latest findings settle lingering questions about how vesicle retrieval occurs. Early electron microscopy images of vesicles in synapses were interpreted as either a kiss-and-run model or one in which the vesicle is completely incorporated into the cell membrane, to be drawn back into the cell.

"The advance that we have made is to figure out a way of imaging individual vesicles so that we can measure the time course of single vesicle events and immediately answer these questions," said Stevens.

The optical recording technique devised by Stevens and Gandhi involves genetically modifying a gene for one type of vesicle protein to incorporate a special form of green fluorescent protein. This modified fluorescent protein, developed by other researchers, does not fluoresce under acidic conditions normally present in vesicles fully loaded with neurotransmitter. However, when the vesicle releases its payload, the interior becomes less acidic and the vesicle glows a bright green.

Thus, said Stevens, by imaging individual vesicles in cell cultures of neurons, it is now possible to detect how and when vesicles release their cargo at the synaptic membrane.

"Among the minor observations we made was that vesicles can re-acidify themselves in less than half a second," said Stevens. "We also observed that the proteins in the vesicle are maintained together, so that when a vesicle is taken back in from the membrane, the same proteins are still there, even if the vesicle had been fused with the membrane for quite a while.

"And the third thing that was surprising is that all vesicles across different preparations have basically the same number of these tagged protein molecules," said Stevens. "This means that they are either saturated or there is some mechanism for counting the proteins."

The major observations from their studies, said Stevens, are that are three modes of vesicle release and retrieval from the membrane. "One is what you could call classical, when the vesicle opens to the outside world, stays open for about eight seconds, and then is taken back in at random times extending out to twelve or fourteen seconds," he said. This finding confirms previous theories about modes of vesicle recycling, he said.

"However, sometimes if the vesicle failed to be re-internalized to be reused again by about fourteen or fifteen milliseconds, sometimes it got stuck there," said Stevens. In this "stranded" mode, the vesicle remained stuck until another nerve impulse caused it to be zipped into the interior of the neuron to be recycled. Presumably, stranding occurs because vesicle recycling depends somehow on the level of calcium in the nerve cell, which rises precipitously during a nerve impulse, and drops afterward, said Stevens.

"The third recycling mode we observed was a kiss-and run-mode that happened very rapidly, in less than half a second," said Stevens. "Also, we showed experimentally that in this mode there was a 'fusion pore' formed where the vesicle contacted the membrane," he said.

Stevens and Gandhi also found that vesicles appear to adjust their mode of recycling based on the probability that a given synapse will trigger the release of a vesicle's cargo. Vesicles in synapses with a low-release probability are more likely to use the rapid kiss-and-run mode, he said, while those vesicles in a higher-probability synapse use the slower compensatory mode.

Future studies will seek to determine the molecules responsible for recycling and how structures such as the fusion pore form. The researchers will also explore the role of calcium in recycling, as well as the advantages to the nerve cell of using the kiss-and-run recycling mode.
-end-


Howard Hughes Medical Institute

Related Neurons Articles:

New tool to identify and control neurons
One of the big challenges in the Neuroscience field is to understand how connections and communications trigger our behavior.
Neurons that regenerate, neurons that die
In a new study published in Neuron, investigators report on a transcription factor that they have found that can help certain neurons regenerate, while simultaneously killing others.
How neurons use crowdsourcing to make decisions
When many individual neurons collect data, how do they reach a unanimous decision?
Neurons can learn temporal patterns
Individual neurons can learn not only single responses to a particular signal, but also a series of reactions at precisely timed intervals.
A turbo engine for tracing neurons
Putting a turbo engine into an old car gives it an entirely new life -- suddenly it can go further, faster.
Brain neurons help keep track of time
Turning the theory of how the human brain perceives time on its head, a novel analysis in mice reveals that dopamine neuron activity plays a key role in judgment of time, slowing down the internal clock.
During infancy, neurons are still finding their places
Researchers have identified a large population of previously unrecognized young neurons that migrate in the human brain during the first few months of life, contributing to the expansion of the frontal lobe, a region important for social behavior and executive function.
How many types of neurons are there in the brain?
For decades, scientists have struggled to develop a comprehensive census of cell types in the brain.
Molecular body guards for neurons
In the brain, patterns of neural activity are perfectly balanced.
Engineering researchers use laser to 'weld' neurons
University of Alberta researchers have developed a method of connecting neurons, using ultrashort laser pulses -- a breakthrough technique that opens the door to new medical research and treatment opportunities.

Related Neurons Reading:

The Neuron: Cell and Molecular Biology
by Irwin B. Levitan (Author), Leonard K. Kaczmarek (Author)

The Fourth Edition of The Neuron provides a comprehensive first course in the cell and molecular biology of nerve cells. The book begins with properties of the many newly discovered ion channels that have emerged through mapping of the genome. These channels shape the way a single neuron generates varied patterns of electrical activity. Covered next are the molecular mechanisms that convert electrical activity into the secretion of neurotransmitter hormones at synaptic junctions between neurons. The following section examines the biochemical pathways that are linked to the action of... View Details


The Neuron: Cell and Molecular Biology
by Irwin B. Levitan (Author), Leonard K. Kaczmarek (Author)

The third edition of The Neuron provides a comprehensive first course in the cell and molecular biology of nerve cells. The first part of the book covers the properties of the many ion channels that shape the way a single neuron generates varied patterns of electrical activity, as well as the molecular mechanisms that convert electrical activity into the secretion of neurotransmitter hormones at synaptic junctions between neurons. The second part covers the biochemical pathways that are linked to the action of neurotransmitters and can alter the cellular properties of neurons or... View Details


Neurons In Action 2: Tutorials and Simulations using NEURON
by John W. Moore (Author), Anne E. Stuart (Author)

Neurons in Action 2 is the second version of a unique CD-ROM-based learning tool that combines hyperlinked text with NEURON simulations of laboratory experiments in neurophysiology. Version 2 features nine new tutorials introducing new channel types, single-channel simulations, and a redesigned interface. Neurons in Action s moving graphs provide insight into nerve function that is simply not possible with conventional, static text and figure presentations. Students discover how changing parameters such a neuronal geometry, ion concentrations, ion channel densities, and degree of myelination... View Details


From Neurons to Neighborhoods : The Science of Early Childhood Development
by Committee on Integrating the Science of Early Childhood Development (Author), Youth, and Families Board on Children (Author), National Research Council (Author), Committee on Integrating the Science of Early Childhood Development (Author), Jack P. Shonkoff (Editor), Deborah A. Phillips (Editor)

How we raise young children is one of today's most highly personalized and sharply politicized issues, in part because each of us can claim some level of "expertise." The debate has intensified as discoveries about our development-in the womb and in the first months and years-have reached the popular media.

How can we use our burgeoning knowledge to assure the well-being of all young children, for their own sake as well as for the sake of our nation? Drawing from new findings, this book presents important conclusions about nature-versus-nurture, the impact of being born into a... View Details


From Neuron to Brain
by John G. Nicholls (Author), A. Robert Martin (Author), David A. Brown (Author), Mathew E. Diamond (Author), David A. Weisblat (Author), Paul A. Fuchs (Author)

From Neuron to Brain, Fifth Edition, provides a readable, up-to-date book for use in undergraduate, graduate, and medical school courses in neuroscience. As in previous editions, the emphasis is on experiments made by electrical recordings, molecular and cellular biological techniques, and behavioral studies on the nervous system, from simple reflexes to cognitive functions. Lines of research are followed from the inception of an idea to new findings being made in laboratories and clinics today.

A major change is that this edition begins with the anatomy and physiology of the... View Details


The 7 Secrets of Neuron Leadership: What Top Military Commanders, Neuroscientists, and the Ancient Greeks Teach Us about Inspiring Teams
by W. Craig Reed (Author), Gordon R. England (Foreword)

Leadership techniques backed by the world's most effective teams

The 7 Secrets of Neuron Leadership offers a diverse collection of wisdom and practical knowledge to help you build and lead your most effective team yet. Written by a former U.S. Navy diver, this book draws from the author's experiences and beyond to reveal key truths about the nature of teamwork, and expose the core of effective team leadership. You'll go back to ancient Greece to discover the nine personality types and the seven types of love that form the foundation of human interaction, and learn how... View Details


From Photon to Neuron: Light, Imaging, Vision
by Philip Nelson (Author)

A richly illustrated undergraduate textbook on the physics and biology of light

Students in the physical and life sciences, and in engineering, need to know about the physics and biology of light. Recently, it has become increasingly clear that an understanding of the quantum nature of light is essential, both for the latest imaging technologies and to advance our knowledge of fundamental life processes, such as photosynthesis and human vision. From Photon to Neuron provides undergraduates with an accessible introduction to the physics of light and offers a unified view... View Details


From Neuron to Brain: A Cellular and Molecular Approach to the Function of the Nervous System, Fourth Edition
by John G. Nicholls (Author), A. Robert Martin (Author), Bruce G. Wallace (Author), Paul A. Fuchs (Author)

In the 25 years since From Neuron to Brain was first published, the authors' aim has remained constant—to describe how nerve cells go about their business of transmitting signals, how the signals are put together, and how, out of this integration, higher functions emerge. The new Fourth Edition, while maintaining this focus, has been completely reformatted and updated.

The emphasis, as before, is on experiments, and on the way they are carried out. Using a narrative approach, the authors follow a line from the original inception of a new idea to an account of research being done today.... View Details


The Myth of Mirror Neurons: The Real Neuroscience of Communication and Cognition
by Gregory Hickok (Author)

An essential reconsideration of one of the most far-reaching theories in modern neuroscience and psychology.

In 1992, a group of neuroscientists from Parma, Italy, reported a new class of brain cells discovered in the motor cortex of the macaque monkey. These cells, later dubbed mirror neurons, responded equally well during the monkey’s own motor actions, such as grabbing an object, and while the monkey watched someone else perform similar motor actions. Researchers speculated that the neurons allowed the monkey to understand others by simulating their actions in its... View Details


Think-A-Lot-Tots: The Neuron: Science Books for Babies, Toddlers, and Kids
by Dr. Thomai Dion (Author)

How does our body move? How do we smile, wave hello, or stomp in puddles? It is all thanks to the brain's special helper: The Neuron. Dive into this educational picture book with your baby, toddler, or young child and discover the answers to their science and biology questions about moving and how we do it. This colorful and educational picture book will help build your child's vocabulary and kickstart early learning. Curious kids, budding scientists, and future doctors, nurses, and medical professionals are sure to become captivated by the neuron as they learn all about its different parts... View Details

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Confronting Stigma
Why do we harshly judge certain behaviors or conditions, making it harder to talk honestly about them? This hour, TED speakers confront stigmas around addiction, depression, HIV and sex work. Guests include journalist Johann Hari, TV/film producer and mental health advocate Nikki Webber Allen, HIV awareness educator Arik Hartmann, and sex worker and activist Juno Mac.
Now Playing: Science for the People

#461 Adhesives
This week we're discussing glue from two very different times. We speak with Dr. Jianyu Li about his research into a new type of medical adhesive. And Dr. Geeske Langejans explains her work making and investigating Stone Age and Paleolithic glues.