Nav: Home

Regulatable gene therapy may advance treatment of Parkinson's disease

June 04, 2004

Northwestern University neuroscientists have overcome a major obstacle in gene therapy research. They've devised a method that will safely deliver and regulate expression of therapeutic genes introduced into the central nervous system to treat Parkinson's disease and other neurodegenerative diseases.

The method, developed by Martha C. Bohn and colleagues, is described in the June issue of the journal Gene Therapy. Bohn is Medical Research Institute Council Professor of Pediatrics at the Children's Memorial Institute for Education and Research and professor of pediatrics and of molecular pharmacology and biological chemistry at Northwestern University Feinberg School of Medicine.

Jiang Lixin, a post-doctoral fellow in Bohn's laboratory, created three different viral vectors -- carrier molecules -- that used human fluorescent green protein to track gene delivery and expression in cells. The vectors, made with the harmless adeno-associated virus (AAV), carried the "tet-off" system, in which the introduced gene is continually expressed or "on" but can be temporarily "turned off" when a small dose of the tetracycline antibiotic derivative doxycycline is administered.

One vector, known as rAAVS3, displayed particularly tighter regulation in neurons when gene expression was measured at the protein and molecular RNA levels.

To assess regulation in the brain, the researchers injected the vector into the striatum of rats, the area in the brain where the neurotransmitter dopamine activates the nerve cells that control motor coordination.

In their experiments, Bohn and co-researchers found that up to 99 percent of the vector-introduced gene was turned off when the rats were given small doses of doxycycline. In Parkinson's disease, dopamine-producing neurons degenerate, resulting in gait problems, muscle rigidity and tremors .

Several years ago Bohn's laboratory group discovered that glial cells in the embryonic brain stem secrete factors, or proteins, that promote survival and differentiation of dopamine neurons.

One of these proteins, called glial cell line-derived neurotrophic factor (GDNF), is a potent factor that promotes growth of not only dopamine neurons, but also motor neurons and several other types of neurons. GDNF may have therapeutic potential for several neurodegenerative diseases, including Parkinson's disease and Lou Gehrig's disease.

Bohn's laboratory was the first to show that introduction of a GDNF gene in a rodent model of Parkinson's disease halts the disease process.

"GDNF gene therapy has exciting potential to 'cure' Parkinson's disease, but since putting a gene into the brain may lead to expression and increased levels of GDNF protein for years, it will be important to have some way to turn off gene expression to arrest unanticipated side effects," Bohn said.

Bohn and her colleagues have been developing viral vectors that offer a safe means to deliver GDNF, as well as other therapeutic genes. The AAV vector that the researchers used in these experiments is safe and approved for use in several clinical trials in the brain of humans; however, no vector in which the gene can be turned off is yet approved for use in clinical trials.

"A crucial piece of our research is related to safety," Bohn said. "We were excited to find the right mechanism to deliver the gene into the nervous system and tightly control its expression using doxycycline, a drug already approved by the Food and Drug Administration and found to have no side effects."

Bohn cautioned that thorough safety and toxicity studies of the new vector are needed and that her laboratory group is not ready to assess its use in humans.
This research was conducted as part of the Parkinson's Disease Gene Therapy Study Group, a consortium formed by the National Institute of Neurological Disorders and Stroke. Howard J. Federoff, University of Rochester, is the principal investigator of the study group. The research was sponsored by grants from the National Institutes of Health, the Walden W. and Jean Y. Shaw Foundation and the Medical Research Institute Council of Children's Memorial Hospital.

Northwestern University

Related Neurons Articles:

New tool to identify and control neurons
One of the big challenges in the Neuroscience field is to understand how connections and communications trigger our behavior.
Neurons that regenerate, neurons that die
In a new study published in Neuron, investigators report on a transcription factor that they have found that can help certain neurons regenerate, while simultaneously killing others.
How neurons use crowdsourcing to make decisions
When many individual neurons collect data, how do they reach a unanimous decision?
Neurons can learn temporal patterns
Individual neurons can learn not only single responses to a particular signal, but also a series of reactions at precisely timed intervals.
A turbo engine for tracing neurons
Putting a turbo engine into an old car gives it an entirely new life -- suddenly it can go further, faster.
Brain neurons help keep track of time
Turning the theory of how the human brain perceives time on its head, a novel analysis in mice reveals that dopamine neuron activity plays a key role in judgment of time, slowing down the internal clock.
During infancy, neurons are still finding their places
Researchers have identified a large population of previously unrecognized young neurons that migrate in the human brain during the first few months of life, contributing to the expansion of the frontal lobe, a region important for social behavior and executive function.
How many types of neurons are there in the brain?
For decades, scientists have struggled to develop a comprehensive census of cell types in the brain.
Molecular body guards for neurons
In the brain, patterns of neural activity are perfectly balanced.
Engineering researchers use laser to 'weld' neurons
University of Alberta researchers have developed a method of connecting neurons, using ultrashort laser pulses -- a breakthrough technique that opens the door to new medical research and treatment opportunities.

Related Neurons Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...