Enzyme plays key role in cell fate

June 04, 2008

The road to death or differentiation follows a similar course in embryonic stem cells, said researchers at Baylor College of Medicine in Houston in a report that appears online today in the journal Cell Stem Cell.

"Caspases, known as 'killer enzymes,' that are activated during programmed cell death, are also active in the initial phases of cell differentiation," said Dr. Thomas Zwaka, assistant professor in the Stem Cells and Regenerative Medicine Center (STaR) at BCM.

Research into embryonic stem cells is basic to understanding differentiation, the process by which some of the earliest cells begin the process of becoming different tissues and organs. Scientists are eager to tap the potential of the pluripotent embryonic stem cells because they have the ability to become almost any kind of cell in the body. That is, however, just one of the possible fates they face. They are also capable of almost infinite self-renewal made possible by an autoregulatory loop including several key transcription factors (e.g., Oct4, Nanog). (Transcription factors bind to DNA to control the transfer of genetic information into RNA.)

The involvement of caspases in differentiation came as a surprise, said Zwaka. However, it makes a certain kind of sense.

"From a more philosophical point of view, programmed cell death (apoptosis) is a specialized form of differentiation," said Zwaka. (Cells undergo apoptosis or programmed cell death for a variety of reasons - most of them related to keeping organisms or tissues healthy.)

In studies in his laboratory, he and his colleagues at BCM found an "overlap between the pathways that drive cell death and cell differentiation" in a group of enzymes called caspases.

"Caspases trigger differentiation," he said. "If you remove specific caspases, stem cells have a differentiation defect. When we artificially increase caspase activity, the cells differentiated. When we increased the enzyme activity even more, the cell went into programmed cell death."

In studying how caspases achieve this activity, he noted that the enzyme is a protease or molecular scissors that cleave or cut proteins at specific points. In particular, they found that caspase cleaves Nanog, one of the transcription factors key to maintaining the embryonic stem cells in their self-renewal state.

"This is a proof of concept study," said Zwaka. "It shows a strong link between cell death and differentiation pathways. We hope this is a general concept that we can apply in other kinds of stem cells."

The finding has implications for other kinds of studies. One is that manipulating programmed cell death pathways and caspase targets could help to revert a somatic or already differentiated cell into an embryonic stem cell-like fate. For instance manipulating Nanog at the caspase cleavage site might improve the effectiveness of this technique and enable elimination of the use of viruses, which can contaminate cell lines.
-end-
Others who took part in this research include: Jun Fujita, Ana M. Crane, Marlon K. Souza and Marion Dejosez, all of BCM; Michael Kyba of The University of Texas Southwestern Medical Center in Dallas, Richard A. Flavell of Yale University School of Medicine in New Haven, Connecticut, and James A. Thomson of the University of Wisconsin in Madison.

Funding for this work came from the Lance Armstrong Foundation, the Gillson Longenbaugh Foundation, the Tilker Medical Research Foundation, the Diana Helis Henry Medical Research Foundation, the Huffington Foundation, the Uehara Memorial Foundation and the National Institutes of Health.

After the embargo lifts, the full article is available at http://www.cellstemcell.com/

Baylor College of Medicine

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.