Jefferson researchers identify critical marker of response to gemcitabine in pancreatic cancer

June 04, 2009

(PHILADELPHIA) A protein related to aggressive cancers can actually improve the efficacy of gemcitabine at treating pancreatic cancer, according to a Priority Report in Cancer Research, published by researchers at Thomas Jefferson University.

The protein, called Hu antigen R (HuR), is a stress response protein found in the cytoplasm of pancreatic tumor cells. In certain experimental settings, pancreatic cancer cells that overexpressed HuR were up to 30-fold more sensitive to gemcitabine (Gemzar), according to Jonathan Brody, Ph.D., assistant professor of Surgery at Jefferson Medical College of Thomas Jefferson University.

In a clinical correlate study that included 32 resected pancreatic cancer patients who received gemcitabine, patients who had low cytoplasmic HuR levels had a 7-fold increased mortality risk compared to patients with high levels. This was after adjustment for other variables including age, sex, radiation therapy and other chemotherapy use.

"This marker appears to tell us upfront whether a patient will respond to treatment with gemcitabine, which is the routine treatment for pancreatic cancer," said Dr. Brody, who is the senior author of the study. "Of course, larger and comprehensive prospective studies need to be performed, but we now have a real clue about how to make this treatment better. Finding a mechanism that regulates gemcitabine's metabolism in pancreatic cancer cells is the real novel and exciting aspect of these findings."

Dr. Brody and colleagues found that in pancreatic cancer, HuR helps to regulate an enzyme called deoxycytidine kinase (dCK), which is responsible for metabolizing and activating gemcitabine. As with most chemotherapy drugs, gemcitabine causes cell stress and activates the HuR stress proteins. In turn, the high levels of HuR stimulate the production of more dCK, thus making gemcitabine more efficient, according to Dr. Brody.

"Normally, patients higher HuR cytoplasmic levels have a worse prognosis, since HuR expression is associated with advanced malignancies," Dr. Brody said. "However, in our study, they did better than patients with low HuR levels when they were treated with gemcitabine. We think it's because they already have high HuR levels at the time of treatment, which may be a response to the tumor cell environment."

According to Dr. Brody, research is underway to find a way to activate HuR in patients with a low expression. Other goals include expanding these findings to a larger pancreatic cancer population, and to other tumors that may be treated with gemcitabine, including breast, ovarian and certain lung cancers. They also want to determine if other chemotherapeutic agents engage this intriguing and manipulative pathway.
-end-
Co-authors of the paper include Charles J. Yeo, M.D., Samuel D. Gross Professor and chairman of the department of Surgery, and Agnieszka Witkiewicz, M.D., assistant professor of Pathology, Anatomy and Cell Biology. Drs. Brody, Yeo and Witkiewicz are co-directors of the Jefferson Pancreas, Biliary and Related Cancer Center.

Other study collaborators include Dr. Myriam Gorospe from the National Institute on Aging (NIH) and Dr. Judith Keen from the University of Medicine and Dentistry of New Jersey.

Thomas Jefferson University

Related Pancreatic Cancer Articles from Brightsurf:

Precision chemo-immunotherapy for pancreatic cancer?
Pancreatic cancer is highly lethal: according to the National Cancer Institute, only about 10 percent of patients remain alive five years after diagnosis.

Nerves keep pancreatic cancer cells from starving
Pancreatic cancer cells avert starvation by signaling to nerves, which grow into dense tumors and secrete nutrients.

Pancreatic cancer: Subtypes with different aggressiveness discovered
To date, no targeted personalized therapies for pancreatic cancer exist.

Bringing the 'sticky' back to pancreatic cancer
A multidisciplinary team of researchers at Japan's Tohoku University has found that a gene regulator, called BACH1, facilitates the spread of pancreatic cancer to other parts of the body.

Does lung damage speed pancreatic cancer?
High levels of CO2 in the body, due to chronic respiratory disorders, may exacerbate pancreatic cancer, making it more aggressive and resistant to therapy.

Scientists have identified the presence of cancer-suppressing cells in pancreatic cancer
Researchers have identified cells containing a protein called Meflin that has a role in restraining the progression of pancreatic cancer.

Pancreatic cancer discovery reveals how the aggressive cancer fuels its growth
A new discovery about pancreatic cancer sheds light on how the cancer fuels its growth and may help explain how promising cancer drugs work -- and for whom they will fail.

Overcoming resistance in pancreatic cancer
In pancreatic cancer cells' struggle to survive, the cells choose alternative routes when their main pathways are blocked by drugs.

Exposing how pancreatic cancer does its dirty work
Pancreatic cancer is a puzzle -- tumors slough off cells into the bloodstream early in the disease, but the tumors themselves have almost no blood vessels in them.

Targeting cell division in pancreatic cancer
Study provides new evidence of synergistic effects of drugs that inhibit cell division and support for further clinical trials.

Read More: Pancreatic Cancer News and Pancreatic Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.