Could life survive on Mars? Yes, expert says

June 04, 2010

Researchers at McGill's department of natural resources, the National Research Council of Canada, the University of Toronto and the SETI Institute have discovered that methane-eating bacteria survive in a highly unique spring located on Axel Heiberg Island in Canada's extreme North. Dr. Lyle Whyte, McGill University microbiologist explains that the Lost Hammer spring supports microbial life, that the spring is similar to possible past or present springs on Mars, and that therefore they too could support life.

The subzero water is so salty that it doesn't freeze despite the cold, and it has no consumable oxygen in it. There are, however, big bubbles of methane that come to the surface, which had provoked the researchers' curiosity as to whether the gas was being produced geologically or biologically and whether anything could survive in this extreme hypersaline subzero environment. "We were surprised that we did not find methanogenic bacteria that produce methane at Lost Hammer," Whyte said, "but we did find other very unique anaerobic organisms - organisms that survive by essentially eating methane and probably breathing sulfate instead of oxygen."

It has been very recently discovered that there is methane and frozen water on Mars. Photos taken by the Mars Orbiter show the formation of new gullies, but no one knows what is forming them. One answer is that there could be that there are springs like Lost Hammer on Mars. "The point of the research is that it doesn't matter where the methane is coming from," Whyte explained. "If you have a situation where you have very cold salty water, it could potentially support a microbial community, even in that extreme harsh environment." While Axel Heiberg is already an inhospitable place, the Lost Hammer spring is even more so. "There are places on Mars where the temperature reaches relatively warm -10 to 0 degrees and perhaps even above 0ºC," Whyte said, "and on Axel Heiberg it gets down to -50, easy. The Lost Hammer spring is the most extreme subzero and salty environment we've found. This site also provides a model of how a methane seep could form in a frozen world like Mars, providing a potential mechanism for the recently discovered Martian methane plumes."
-end-
The research was published in the International Society for Microbial Ecology Journal and received logistical support from McGill University's Arctic Research Station and the Canadian Polar Continental Shelf Project. Funding was received from NASA, the Natural Sciences and Engineering Research Council of Canada, and the Canadian Space Agency. Additional funding for student research was provided by the Department of Indian and Northern Affairs, and the Fonds Québécois de la Recherche sur la Nature et les Technologies.

McGill University

Related Methane Articles from Brightsurf:

When methane-eating microbes eat ammonia instead
As a side effect of their metabolism, microorganisms living on methane can also convert ammonia.

Making more of methane
Looking closely at the chemical process that transforms methane into useful products could help unveil more efficient ways to use natural gas.

Methane: emissions increase and it's not a good news
It is the second greenhouse gas with even a global warming potential larger than CO2.

Measuring methane from space
A group of researchers from Alaska and Germany is reporting for the first time on remote sensing methods that can observe thousands of lakes and thus allow more precise estimates of methane emissions.

New 3D view of methane tracks sources
NASA's new 3-dimensional portrait of methane concentrations shows the world's second largest contributor to greenhouse warming.

Show me the methane
Though not as prevalent in the atmosphere as carbon dioxide, methane is a far more potent greenhouse gas.

Containing methane and its contribution to global warming
Methane is a gas that deserves more attention in the climate debate as it contributes to almost half of human-made global warming in the short-term.

Microorganisms reduce methane release from the ocean
Bacteria in the Pacific Ocean remove large amounts of the greenhouse gas methane.

Origin of massive methane reservoir identified
New research provides evidence of the formation and abundance of abiotic methane -- methane formed by chemical reactions that don't involve organic matter -- on Earth and shows how the gases could have a similar origin on other planets and moons, even those no longer home to liquid water.

Unexpected culprit -- wetlands as source of methane
Knowing how emissions are created can help reduce them.

Read More: Methane News and Methane Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.