Gene related to aging plays role in stem cell differentiation

June 04, 2010

(PHILADELPHIA) A gene shown to play a role in the aging process appears to play a role in the regulation of the differentiation of embryonic stem cells, according to researchers from the Center for Stem Cell Biology and Regenerative Medicine and the Department of Medicine at Thomas Jefferson University.

In the study, published online in the journal Aging Cell, the researchers identified a protein interaction that controls the silencing of Oct4, a key transcription factor that is critical to ensuring that embryonic stem cells remain pluripotent. The protein, WRNp, is the product of a gene associated with Werner syndrome, an autosomal recessive disorder hallmarked by premature aging. The gene expression in Werner syndrome closely resembles that of normal aging, and as a result, Werner syndrome is an accepted model of aging.

They first found that WRNp accumulates at the Oct4 promoter in differentiating stem cells. They then found that WRNp interacts with another protein called Dnmt3b to control DNA methylation at the Oct4 promoter, according to researchers led by René Daniel, M.D., Ph.D., associate professor of Medicine.

Previously, Dnmt3b was identified to be a key player in the DNA methylation of the Oct4 promoter. DNA methylation of the Oct4 promoter inactivates the Oct4 gene. The inactivation, or silencing, of this gene is necessary for stem cell differentiation.

"We showed that the depletion of WRNp blocked the recruitment of Dnmt3b to the Oct4 promoter, and resulted in reduced methylation," Dr. Daniel said. "The reduced DNA methylation was associated with continued Oct4 expression, which resulted in attenuated differentiation."

Until now, the focus of studies on the role of WRNp in aging has been on telomeres. These studies have shown that telomeres undergo accelerated shortening and loss in Werner syndrome cells. But it remains to be shown if this is the major role that WRNp plays in the aging process.

"These results reveal a novel function of WRNp, and demonstrate that WRNp controls a key step in pluripotent stem cell differentiation," Dr. Daniel said. "Our data support the emerging hypothesis that attenuated stem cell differentiation is involved in aging. This lack of differentiated cells may contribute to failure to maintain organ or tissue function in the later stages of life."
-end-


Thomas Jefferson University

Related Aging Articles from Brightsurf:

Surprises in 'active' aging
Aging is a process that affects not only living beings.

Aging-US: 'From Causes of Aging to Death from COVID-19' by Mikhail V. Blagosklonny
Aging-US recently published ''From Causes of Aging to Death from COVID-19'' by Blagosklonny et al. which reported that COVID-19 is not deadly early in life, but mortality increases exponentially with age - which is the strongest predictor of mortality.

Understanding the effect of aging on the genome
EPFL scientists have measured the molecular footprint that aging leaves on various mouse and human tissues.

Muscle aging: Stronger for longer
With life expectancy increasing, age-related diseases are also on the rise, including sarcopenia, the loss of muscle mass due to aging.

Aging memories may not be 'worse, 'just 'different'
A study from the Department of Psychological & Brain Sciences in Arts & Sciences adds nuance to the idea that an aging memory is a poor one and finds a potential correlation between the way people process the boundaries of events and episodic memory.

A new biomarker for the aging brain
Researchers at the RIKEN Center for Biosystems Dynamics Research (BDR) in Japan have identified changes in the aging brain related to blood circulation.

Scientists invented an aging vaccine
A new way to prevent autoimmune diseases associated with aging like atherosclerosis, Alzheimer's disease, and Parkinson's disease was described in the article.

The first roadmap for ovarian aging
Infertility likely stems from age-related decline of the ovaries, but the molecular mechanisms that lead to this decline have been unclear.

Researchers discover new cause of cell aging
New research from the USC Viterbi School of Engineering could be key to our understanding of how the aging process works.

Deep Aging Clocks: The emergence of AI-based biomarkers of aging and longevity
The advent of deep biomarkers of aging, longevity and mortality presents a range of non-obvious applications.

Read More: Aging News and Aging Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.