Nav: Home

Designer materials with completely random structures might enable quantum computing

June 04, 2018

Topological randomness may be the answer for lossless electronics and making the nuts and bolts of quantum computers. Complete randomness in the structures of superconductors and insulators could lower the requirements of pristine crystalline ordering - and make them more accessible to industry.

Designing quantum materials with exotic and unprecedented electrical properties has the field of physics teeming with buzz. Researchers at Aalto University in Finland have now introduced a significant turn in this discussion by developing an amorphous material which exhibits topological superconductivity. Until this point, these materials have required highly regular structures to show desired electrical properties.

The findings, published in Nature Communications, bring the field one step closer to application. Topological superconductors and insulators are considered to be possible building blocks of lossless components for quantum computers. While topological superconductors might not exist in nature, they can be fabricated, as the study demonstrates.

'We have presented a method of fabricating topological materials in amorphous systems with randomly placed constituents. This means we can achieve superconductivity in the material by sprinkling magnetic atoms on a superconducting surface completely at random, not in highly-defined and ornamented lattices, for example,' explains doctoral student Kim Pöyhönen.

The recent boom on topological superconductors stems mainly from an unconventional quantum-level phenomenon, a collective movement of many individual particles called Majorana fermion excitations. They have been envisioned as critical ingredients of topological quantum computers.

'Getting highly irregular, random systems to work as topological superconductors will potentially make their fabrication and manufacture much more convenient compared to current methods,' says research group leader, Docent Teemu Ojanen.

Perhaps for now, the implications of the random quantum material verge only on fundamental research, but that might not be the case for much longer.

'For topological quantum matter to find its way to actual applications, it's imperative we find even more new candidates for amorphous topological materials,' states Ojanen.
-end-
Research article:

https://www.nature.com/articles/s41467-018-04532-x.pdf

Further information:

Teemu Ojanen, Docent
Theory of Quantum Matter group: http://physics.aalto.fi/en/groups/tqm/
Department of Applied Physics
Aalto University
teemu.ojanen@aalto.fi
tel. 358-40-510-5406

Aalto University

Related Superconductors Articles:

Laser pulses reveal the superconductors of the future
A new study has revealed that the dream of more efficient energy usage can turn into reality.
Enhanced electron doping on iron superconductors discovered
The IBS research team headed by the associate director of CCES, Kim Chang Young, presented the possibility of unifying theories to explain the working mechanism of iron- based superconductors.
New ferromagnetic superconductors AEuFe4As4 (A = Rb, Cs)
The search for ferromagnetic superconductors, in which ferromagnetism coexists with superconductivity below their transition temperatures TFM and TSC (TFM < TSC), can trace back to before 1960s, however, a genuine FMSC that exhibits robust superconducting and ferromagnetic properties is absent to date.
Marrying superconductors, lasers, and Bose-Einstein condensates
As superconductors, lasers, and Bose-Einstein condensates all share a common feature, it has been expected that it should be able to see these features at the same time.
Quantum sensors for high-precision magnetometry of superconductors
Scientists from Basel have developed a new method that has enabled them to image magnetic fields on the nanometer scale at temperatures close to absolute zero for the first time.
More Superconductors News and Superconductors Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...