The role of cohesin in genome 3D structure helps for a better understanding of tumor cells

June 04, 2018

In recent years it has become evident that the spatial organisation of the genome is key for its function. This organisation depends on a number of factors, the cohesin protein complex being one of them. This essential complex is present in the cells in two versions that contain either the SA1 or SA2 subunit. Scientists at the Spanish National Cancer Research Centre (CNIO), the Centre for Genomic Regulation (CRG), and the Centro Nacional de Análisis Genómico (CNAG-CRG) have addressed the functional specificity of these two variant cohesin complexes. The study, published in Nature Structural and Molecular Biology, analyses in-depth the functions of both variants in 3D genome architecture and shows how the alteration of SA2 influences gene expression and may favour the loss of differentiation in tumour cells.

To work out the function of cohesin SA1 and SA2, and try to understand how the absence of the latter favours the growth of tumour cells, the authors have carried out an in-depth study of the 3D structure of the genome using state of the art technologies.

"It is difficult to understand how the tumour cell survives and even profits from the absence of one component that, in principle, is essential for its viability", points out Ana Losada, head of the Chromosome Dynamics Group at the CNIO and one of the leading authors of this paper. The alteration referred to affects the SA2 variant and has been detected in various types of cancer, such as bladder cancer, Ewing sarcoma or in acute myeloid leukaemia.

The different role of the SA1 and SA2 cohesin variants in the organisation of the genome has been dissected for the first time ever. "Without knowing the function of each of the variants of cohesin, it is very difficult to decipher its role in carcinogenic processes. This work brings us closer to this objective and is a new example of how the study of the 3D organisation of the genome contributes to a better understanding and characterisation of the regulation of genes" highlights Marc A. Marti-Renom, head of the Structural Genomics group at the CNAG-CRG and co-leader of the study.

Where, How and Why? Deciphering the role of cohesin in the 3D genome

The researchers analysed where each variant is found, their role in gene expression and in the 3D organisation of the genome. "We have applied functional genomics to address the distribution of the two cohesin variants, their enrichment in different regulatory elements of the genome and their co-localisation with other factors involved in genome organisation, and we have interrogated the organisation of the genome in cells in which one or the other variant was absent", explain Aleksandar Kojic and Ana Cuadrado, from the Chromosome Dynamics Group at the CNIO and fist authors of the study.

The results show that the two complexes fulfil different functions. Cohesin-SA1 is important for the organisation of the topological domains, which make up the global structure of the genome, and works always alongside the CTCF protein. However, "the cohesin-SA2 is far more versatile and is capable of interacting with diverse transcription factors to form local chromatin loops that bring together distal functional elements of the genome", points out Cuadrado. In other words, it is involved in the regulation of gene expression.

These findings have led the authors to think that "what SA2 does is to facilitate genomic contacts between regulatory elements and target genes that define the identity of each type of cell. We believe -points out Losada- that the absence of this cohesin variant in tumour cells alters their identity. Importantly, these cells still have the other cohesin variant, SA1, to allow them to survive and carry out cell division".

"Our work is consistent with the conclusion of other CNIO researchers that the mutation of SA2 in tumour cells does not affect cell division. Instead, we suspect that this mutation alters cell identity. It is necessary to start to look for SA2 interactors, and analyse which key genes may be affected by its absence in tumour cells", concludes Losada.

Centro Nacional de Investigaciones Oncológicas (CNIO)

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to