Childhood cancer: The four survival strategies of tumor cells

June 04, 2018

Cancer cells in children tend to develop by following four main trajectories - and two of them are linked to relapse of the disease, research led by Lund University in Sweden shows. The four strategies can occur simultaneously in a single tumour, according to the study that is now published in Nature Genetics.

The researchers mapped out the genome of cancer cells from more than 50 tumours in order to identify the four strategies. The genome of cancer cells often evolves, both in order to avoid the body's own defence mechanisms and to survive treatment with chemotherapy or other drugs. When cancer cells multiply, mutations are formed and thus new types of tumour cells, known as clones, can occur.

A challenge when treating patients is that, within a single tumour, there may be several different clones, which individually trigger the development of cancer in varying ways. The clones may also respond to chemotherapy differently. More knowledge about how such clones develop is therefore an important part of improving treatment.

"We wanted to learn more about how some tumours evade treatment and the strategies the cancer cells develop", explains Jenny Karlsson at Lund University, one of the researchers behind the study.

The developmental trajectories of tumours have so far been unknown in childhood cancer. Therefore, the researchers mapped out the genome of cancer cells from more than 50 tumours from patients with Wilms tumour, neuroblastoma and rhabdomyosarcoma. This allowed the researchers to track the types of mutations that caused the emergence of four main survival strategies: tolerance, coexistence, competition and chaos.

"The strategies are key as they give us an indication of the evolutionary capacity a tumour has at the time of discovery. Patients with the first two variants generally have good outcomes, while the latter two strategies are associated with risk of relapse", says Professor David Gisselsson Nord, who led the study.

If two of the strategies - competition or chaos - existed in the tumour at the onset of illness, the risk of relapse was more than 50 per cent.

"The same two strategies were found when we analysed relapse tumours. It seems that some cancer cells are programmed from the outset to single-handedly create a relapse. Relapsed tumours hade genomes that were often radically altered compared to the patient's first tumour. We conclude that the first tumour should not be used as a proxy to predict targeted treatment in case of a relapse. A new biopsy is well warranted. The genome of the tumour usually changes over time", says David Gisselsson Nord.

The next step will be to identify which mechanisms drive the survival strategies adopted by the cancer in the initial phase of the disease.

"If we knew more about how the environment in the patient's tissues triggers cancer cells to develop, we could also influence how they change during treatment and perhaps prevent a relapse. We are now applying for funding to conduct such studies and to evaluate, in a major study, whether the four strategies can really be used in the clinic", concludes David Gisselsson Nord.

THE FOUR STRATEGIES:

Strategy 1: Tolerance.
New clones are allowed to emerge locally in the tumour, but they stay in their place of origin. The researchers did not find that this strategy was associated to relapse.

Strategy 2: Coexistence.
New clones grow together with the original tumour cells, and coexist with them in many parts of the tumour. The researchers did not find that this strategy was associated to relapse.

Strategy 3: Competition.
A new clone outcompetes the original tumour cell, and then builds up parts of the tumour entirely on its own. The researchers found that this strategy was associated with increased risk of relapse.

Strategy 4: Chaos.
New clones mutate intensively so that a variety of cell types emerge in a specific part of the tumour at the same time. This strategy was also associated with increased risk of relapse.
-end-


Lund University

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.