Nav: Home

New research explores the mechanics of how birds flock

June 04, 2019

Wildlife researchers have long tried to understand why birds fly in flocks and how different types of flocks work. A new study from the University of North Carolina at Chapel Hill explores the mechanics and benefits of the underlying flock structure used by four types of shorebirds. Understanding more about how these birds flock moves researchers a step closer to understanding why they flock.

The study, led by Aaron Corcoran, a postdoctoral researcher studying bat and bird flight and ecology, and biology Professor Tyson Hedrick of UNC-Chapel Hill, appears in the June 4 issue of eLife. The National Science Foundation funded the work.

In the study, the researchers focused on four types of shorebirds that vary in size: dunlin, short-billed dowitcher, American avocet and marbled godwit. Corcoran and Hedrick filmed and analyzed almost 100 hours of video footage to better understand the mechanics of shorebird flocks. They found that the birds fly in a newly defined shape the team named a compound V-formation, which they believe provides an aerodynamic advantage and predator protection.

This compound formation is a blend of two of the most common flock formations. One is a cluster formation, common with pigeons, where a large number of birds fly in a moving three-dimensional cloud with no formal structure. This structure is useful for avoiding predators. The second is a simple V-formation, commonly used by Canada Geese, where a smaller number of birds will line up in a well-defined two-dimensional V-shape.

"A flying bird creates downward-moving air immediately behind it and upward-moving air just beyond its wingspan on the left and right," Hedrick said. "Taking advantage of this upward-moving air is all about positioning, and birds in the simple-V formation and compound-V formation are positioned correctly for aerodynamic advantage."

To better understand the cluster-V formation and its mechanics, Corcoran and Hedrick recorded 18 cluster-like flocks of 100 to 1,000 birds flying over a bird sanctuary and agricultural fields during a migration stopover. The researchers measured the individual bird positions, flight speeds and even flapping frequency using three-dimensional computer reconstructions of the flocks from the video recordings.

"We thought we would find a trend in flock organization related to how large or small the different birds were," Hedrick said. "Instead we saw that regardless of size, all these birds flew in the same formation - one that might let them get an aerodynamic benefit while flying in large groups, aiding their long-distance migration."

Birds often fly in flocks ranging from very structured V-formations to loose clusters to improve flight efficiency, navigation or for predator avoidance. However, because it is difficult to measure large flocks of moving birds, few studies have measured how birds position themselves in large flocks or how their position affects their flight speed and flapping frequency.

The four types of birds studied in this project live in similar environments, but vary greatly in size, fly at different speeds, and have been evolutionarily separate for 50 million years. The birds mostly flocked with their own species, except for a few occasions where the godwits and dowitchers flew together in a mixed flock.

The study also showed that each bird -- regardless of size or species, or even the species of its neighbor -- most commonly flew about one wingspan to the side and between a half to one-and-a-half wingspans back from the bird in front of it. This flock structure, which is different from that of other flocking birds like pigeons and starlings, was termed a compound V-formation because birds flying in simple V-shaped formations follow similar rules.
-end-
About the University of North Carolina at Chapel Hill

The University of North Carolina at Chapel Hill, the nation's first public university, is a global higher education leader known for innovative teaching, research and public service. A member of the prestigious Association of American Universities, Carolina regularly ranks as the best value for academic quality in U.S. public higher education. Now in its third century, the University offers 74 bachelor's, 104 master's, 65 doctorate and seven professional degree programs through 14 schools including the College of Arts & Sciences. Every day, faculty, staff and students shape their teaching, research and public service to meet North Carolina's most pressing needs in every region and all 100 counties. Carolina's nearly 330,000 alumni live in all 50 states, the District of Columbia, US Territories and 161 countries. Over 178,000 live in North Carolina.

University of New Orleans

Related Birds Articles:

Diving birds follow each other when fishing
Diving seabirds watch each other to work out when to dive, new research shows.
Why do birds migrate at night?
Researchers found migratory birds maximize how much light they get from their environment, so they can migrate even at night. 
How can robots land like birds?
Birds can perch on a wide variety of surfaces, thick or thin, rough or slick.
Is wildfire management 'for the birds?'
Spotted owl populations are in decline all along the West Coast, and as climate change increases the risk of large and destructive wildfires in the region, these iconic animals face the real threat of losing even more of their forest habitat.
Feathers came first, then birds
New research, led by the University of Bristol, suggests that feathers arose 100 million years before birds -- changing how we look at dinosaurs, birds, and pterosaurs, the flying reptiles.
More Birds News and Birds Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...