Nav: Home

A combination of insecticides and mite weakens honeybees

June 04, 2019

The Western honeybee is the most important managed pollinator globally and has recently experienced unsustainably high colony losses in many regions of the world. Synergistic interactions among stressors are believed to be primarily responsible. Despite the clear negative impact of certain neonicotinoids and the ubiquitous ectoparasitic mite Varroa destructor on exposed honeybees, no data existed to show synergistic effects between these two stressors.

Current data that was collected at the University of Bern and Agroscope, in cooperation with the Auburn University (USA) and Chiang Mai University (Thailand), suggest a novel possible previously overlooked mechanism for recent unsustainably high losses of managed honeybee colonies. The results were published in "Scientific Reports", an Open-Access Journal of "Nature". According to the authors, the study underlines the importance of developing sustainable agro-ecosystem management schemes that incorporate reduced used of neonicotinoids and sustainable solutions for V. destructor mites.

A negative combination

Two stressors having a clear negative impact on the health of honeybees are insecticides and the ubiquitous ectoparasitic mite Varroa destructor. These mites originated from Asia, and have switched hosts from Eastern honeybees Apis cerana to Western honeybees Apis mellifera to become the most serious biotic threat to Western honeybees globally. Similarly, there is evidence for negative impact of widely used neonicotinoid insecticides. However, no data existed so far to show synergistic effects between these two stressors.

In the present work, honeybee colonies exposed to two neonicotinoids (thiamethoxam and clothianidin) via pollen paste feeding, did not affect honeybee worker mass or longevity. However, when in combination with V. destructor infestation, a synergistic negative effect was observed. Whilst a negative synergism was observed for body mass in both summer and autumn, it was only observed for survival 16 weeks post neonicotinoid colony exposure. The revealed results suggest a previously overlooked time-lag effect of neonicotinoid exposure. Because honeybee colonies in temperate regions must produce significant quantities of long-living winter bees to survive, the observed negative synergistic effects on individual winter honeybee longevity are most likely compromising colony survivorship.

Sustainable solutions required

"Beekeepers in many regions of the world face losses of their colonies, which are far too high", says Prof. Peter Neumann of the Institute of Bee Health at the University of Bern, co-author and president of COLOSS. Due to the present evidence for interactions between insecticides and mites, the authors stress the importance of developing sustainable agro-ecosystem management and varroa-management schemes. "Reduced usage of insecticides and sustainable solutions for V. destructor mites in agriculture and beekeeping are urgently required", adds Dr. Lars Straub, first author and Post-Doc at the Institute of Bee Health.
-end-
The study was financially supported by the Swiss Federal Office for the Environment (FOEN), Agroscope, the Vinetum Foundation, the ETH Global Foundation, the Chiang Mai University, the USDA National Institute of Food and Agriculture and the Swiss National Science Foundation (SNF). The study was performed by scientists working at the University of Bern (Institute of Bee Health, Vetsuisse Faculty), Agroscope (Swiss Bee Research Centre), Auburn University, as well as Chiang Mai University and Mae Fah Luang University of Thailand.

COLOSS

COLOSS (Prevention of honey bee COlony LOSSes) is an international, non-profit association that focusses on improving the well-being of honey bees at a global level. COLOSS is composed of over 1200 scientific professionals that include researchers, veterinarians, agriculture extension specialists and students from >95 countries. https://coloss.org/

University of Bern

Related Insecticides Articles:

Insecticides are becoming more toxic to honey bees
Researchers discover that neonicotinoid seed treatments are driving a dramatic increase in insecticide toxicity in U.S. agricultural landscapes, despite evidence that these treatments have little to no benefit in many crops.
Time for a closer look at Pyrethroid insecticides
Columbia professors offer their perspective on a recent study on Pyrethroid, among the most widely used insecticides for public health control of vector-borne illnesses, including West Nile virus.
Scientist identify new marker for insecticide resistance in malaria mosquitoes
Researchers at LSTM have genetically modified malaria carrying mosquitoes in order to demonstrate the role of particular genes in conferring insecticide resistance.
The use of certain neonicotinoids could benefit bumblebees, new study finds
Not all neonicotinoid insecticides have negative effects on bees, according to researchers at Lund University and the Swedish University of Agricultural Sciences.
Efficient synthesis of ginkgo compound could lead to new drugs, 'green' insecticides
Chemists at Scripps Research have invented an efficient method for making a synthetic version of the plant compound bilobalide, which is naturally produced by gingko trees.
Controversial insecticides shown to threaten survival of wild birds
New University of Saskatchewan research shows how the world's most widely used insecticides could be partly responsible for dramatic declines in farmland bird populations.
Researchers show the importance of copy-number variants in the development of insecticide resistance in malaria mosquitoes
Researchers from LSTM, working alongside colleagues from the Wellcome Sanger Institute, Cambridge and the Big Data Institute, University of Oxford, have used whole genome sequencing to understand copy-number variants (CNVs) in malaria mosquitoes and their role in insecticide resistance.
Plant probe could help estimate bee exposure to neonicotinoid insecticides
Bee populations are declining, and neonicotinoid pesticides continue to be investigated -- and in some cases banned -- because of their suspected role as a contributing factor.
Researchers determine ideal areas and timing for biological control of invasive stink bug
Biological control of the brown marmorated stink bug, an invasive pest that devastates gardens and crops, would be more effective in natural areas bordering crops or at times when certain insecticides aren't being applied.
A combination of insecticides and mite weakens honeybees
Today, scientists of the Institute of Bee Health of the University of Bern and the honeybee research association COLOSS have published an article in the peer-reviewed journal Scientific Reports that shows a synergistic time-lag interaction between the parasitic mite Varroa destructor and neonicotinoid insecticides reducing survival of winter honeybees, Apis mellifera.
More Insecticides News and Insecticides Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.