Nav: Home

Showtime for photosynthesis

June 04, 2020

Using a unique combination of nanoscale imaging and chemical analysis, an international team of researchers has revealed a key step in the molecular mechanism behind the water splitting reaction of photosynthesis, a finding that could help inform the design of renewable energy technology.

"Life depends on the oxygen that plants and algae split from water; how they do it is still a mystery, but scientists, including our team, are slowly peeling away the layers to get to the answer," said Vittal K. Yachandra, co-lead author of a new study published in PNAS and a chemist senior scientist at the Department of Energy's (DOE) Lawrence Berkeley Laboratory (Berkeley Lab). "If we can understand this step of natural photosynthesis, it would enable us to use those design principles for building artificial photosynthetic systems that produce clean and renewable energy from sunlight and water."

With an instrument that the team designed and fabricated, they analyzed photosynthetic proteins using both X-ray crystallography and X-ray emission spectroscopy. This dual approach, which the team pioneered and have been refining for the past 10 years, generates chemical and protein structure information from the same sample at the same time. The imaging was performed with the X-ray free-electron laser (XFEL) at the LCLS at SLAC National Laboratory, and at SACLA in Japan.

"With this technique, we get the overall picture of how the entire protein structure dynamically changes and we see the chemical intricacies occurring at the reaction site," said co-lead author Junko Yano, a chemist senior scientist in Berkeley Lab's Molecular Biophysics and Integrated Bioimaging (MBIB) Division. "The X-ray free electron laser produces extremely bright, short bursts of X-rays that allow us to not only analyze a protein at room temperature, which is how these reactions occur in nature, but also capture various moments over the reaction time scale."

Traditional crystallography methods often require the sample proteins to be frozen; consequently, they can only generate snapshots of static proteins. This limitation makes it difficult for scientists to get a handle on how proteins actually behave in living organisms, because the molecules morph between different physical states during chemical reactions.

"The water-splitting reaction in photosynthesis is a cyclical process that needs four photons and cycles between four stable 'states,'" said Yano. "Previously, we could only take pictures of these four states. But by taking multiple snapshots in time, we now can visualize how one state goes to the other."

"We saw, really nicely, how the structure changes step-by-step as it transforms from one state to the next state," said Jan F. Kern, MBIB chemist and co-author. "It is pretty exciting, because we can see the 'cause and effect' and the role that each moving atom plays in this transition."

Nicholas K. Sauter, co-author and MBIB computational senior scientist, added: "Essentially, we're trying to take a 'movie' of a chemical reaction. We made a lot of progress to get to this point, in terms of our technology and our computational analyses. The work of our co-author Paul Adams and others in MBIB was critical to interpreting the XFEL and X-ray data. But we still have to get the other frames to see how the reaction is completed and the enzyme is ready for the next cycle."

The Berkeley Lab researchers hope to continue the project once the many research sites that the entire international team relies upon - located in the U.S., Japan, Switzerland, and South Korea - are operating normally following the COVID-19 pandemic.

Kern concluded by noting that the technological milestone presented in this paper benefited greatly from the diverse expertise of the authors from SLAC, Uppsala and Umeå Universities in Sweden, Humboldt University in Germany, and from the capabilities of five DOE Office of Science user facilities: the Stanford Synchrotron Radiation Lightsource and LCLS at Stanford University, and the Advanced Light Source, Energy Sciences Network, and National Energy Research Scientific Computing Center at Berkeley Lab.
-end-
Other Berkeley Lab scientists who contributed to this work include: Ruchira Chatterjee, Louise Lassalle, Kyle D. Sutherlin, Iris D. Young, Sheraz Gul, In-Sik Kim, Philipp S. Simon, Isabel Bogacz, Cindy C. Pham, Nicholas Saichek, Trent Northen, Asmit Bhowmick, Robert Bolotovsky, Derek Mendez, Nigel W. Moriarty, James M. Holton, Aaron S. Brewster, and David Skinner.

This research was supported primarily by the DOE Office of Science and grants from the National Institutes of Health.

Founded in 1931 on the belief that the biggest scientific challenges are best addressed by teams, Lawrence Berkeley National Laboratory and its scientists have been recognized with 13 Nobel Prizes. Today, Berkeley Lab researchers develop sustainable energy and environmental solutions, create useful new materials, advance the frontiers of computing, and probe the mysteries of life, matter, and the universe. Scientists from around the world rely on the Lab's facilities for their own discovery science. Berkeley Lab is a multiprogram national laboratory, managed by the University of California for the U.S. Department of Energy's Office of Science.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit energy.gov/science.

DOE/Lawrence Berkeley National Laboratory

Related Photosynthesis Articles:

E. coli bacteria offer path to improving photosynthesis
Cornell University scientists have engineered a key plant enzyme and introduced it in Escherichia coli bacteria in order to create an optimal experimental environment for studying how to speed up photosynthesis, a holy grail for improving crop yields.
Showtime for photosynthesis
Using a unique combination of nanoscale imaging and chemical analysis, an international team of researchers has revealed a key step in the molecular mechanism behind the water splitting reaction of photosynthesis, a finding that could help inform the design of renewable energy technology.
Photosynthesis in a droplet
Researchers develop an artificial chloroplast.
Even bacteria need their space: Squished cells may shut down photosynthesis
Introverts take heart: When cells, like some people, get too squished, they can go into defense mode, even shutting down photosynthesis.
Marine cyanobacteria do not survive solely on photosynthesis
The University of Cordoba published a study in a journal from the Nature group that supports the idea that marine cyanobacteria also incorporate organic compounds from the environment.
Photosynthesis -- living laboratories
Ludwig-Maximilians-Universitaet (LMU) in Munich biologists Marcel Dann and Dario Leister have demonstrated for the first time that cyanobacteria and plants employ similar mechanisms and key proteins to regulate cyclic electron flow during photosynthesis.
Photosynthesis seen in a new light by rapid X-ray pulses
In a new study, led by Petra Fromme and Nadia Zatsepin at the Biodesign Center for Applied Structural Discovery, the School of Molecular Sciences and the Department of Physics at ASU, researchers investigated the structure of Photosystem I (PSI) with ultrashort X-ray pulses at the European X-ray Free Electron Laser (EuXFEL), located in Hamburg, Germany.
Photosynthesis olympics: can the best wheat varieties be even better?
Scientists have put elite wheat varieties through a sort of 'Photosynthesis Olympics' to find which varieties have the best performing photosynthesis.
Strange bacteria hint at ancient origin of photosynthesis
Structures inside rare bacteria are similar to those that power photosynthesis in plants today, suggesting the process is older than assumed.
Just how much does enhancing photosynthesis improve crop yield?
In the next two decades, crop yields need to increase dramatically to feed the growing global population.
More Photosynthesis News and Photosynthesis Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Sound And Silence
Sound surrounds us, from cacophony even to silence. But depending on how we hear, the world can be a different auditory experience for each of us. This hour, TED speakers explore the science of sound. Guests on the show include NPR All Things Considered host Mary Louise Kelly, neuroscientist Jim Hudspeth, writer Rebecca Knill, and sound designer Dallas Taylor.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

Kittens Kick The Giggly Blue Robot All Summer
With the recent passing of Ruth Bader Ginsburg, there's been a lot of debate about how much power the Supreme Court should really have. We think of the Supreme Court justices as all-powerful beings, issuing momentous rulings from on high. But they haven't always been so, you know, supreme. On this episode, we go all the way back to the case that, in a lot of ways, started it all.  Support Radiolab by becoming a member today at Radiolab.org/donate.