New material, modeling methods promise advances in energy storage

June 04, 2020

The explosion of mobile electronic devices, electric vehicles, drones and other technologies have driven demand for new lightweight materials that can provide the power to operate them. Researchers from the University of Houston and Texas A&M University have reported a structural supercapacitor electrode made from reduced graphene oxide and aramid nanofiber that is stronger and more versatile than conventional carbon-based electrodes.

The UH research team also demonstrated that modeling based on the material nanoarchitecture can provide a more accurate understanding of ion diffusion and related properties in the composite electrodes than the traditional modeling method, which is known as the porous media model.

"We are proposing that these models based on the nanoarchitecture of the material are more comprehensive, detailed, informative and accurate compared to the porous media model," said Haleh Ardebili, Bill D. Cook Associate Professor of Mechanical Engineering at UH and corresponding author for a paper describing the work, published in ACS Nano.

More accurate modeling methods will help researchers find new and more effective nanoarchitectured materials that can provide longer battery life and higher energy at a lighter weight, she said.

The researchers knew the material tested - reduced graphene oxide and aramid nanofiber, or rGO/ANF - was a good candidate because of its strong electrochemical and mechanical properties. Supercapacitor electrodes are usually made of porous carbon-based materials, which provide efficient electrode performance, Ardebili said.

While the reduced graphene oxide is primarily made of carbon, the aramid nanofiber offers a mechanical strength that increases the electrode's versatility for a variety of applications, including for the military. The work was funded by the U.S. Air Force Office of Scientific Research.

In addition to Ardebili, co-authors include first author Sarah Aderyani and Ali Masoudi, both of UH; and Smit A. Shah, Micah J. Green and Jodie L. Lutkenhaus, all from A&M.

The current paper reflects the researchers' interest in improving modeling for new energy materials. "We wanted to convey that the conventional models out there, which are porous media-based models, may not be accurate enough for designing these new nanoarchitectured materials and investigating these materials for electrodes or other energy storage devices," Ardebili said.

That's because the porous media model generally assumes uniform pore sizes within the material, rather than measuring the varying dimensions and geometric properties of the material.

"What we propose is that yes, the porous media model may be convenient, but it is not necessarily accurate," Ardebili said. "For state-of-the-art devices, we need more accurate models to better understand and design new electrode materials."
-end-


University of Houston

Related Electric Vehicles Articles from Brightsurf:

Drop in pandemic CO2 emissions previews world of electric vehicles
When the SF Bay Area mandated shelter-in-place March 16, it created a natural experiment for UC Berkeley's Ron Cohen, who had established an inexpensive pollution sensor network in local neighborhoods.

Plugging in: Survey examines American perceptions of -- and resistance to -- electric vehicles
The latest installment of the Climate Insights 2020 report series finds that resistance to purchasing electric vehicles derives from a variety of sources -- and those reasons differ among some demographics.

New study shows converting to electric vehicles alone won't meet climate targets
Today there are more than 7 million electric vehicles (EVs) in operation around the world, compared with only about 20,000 a decade ago.

New composite material revs up pursuit of advanced electric vehicles
Scientists at Oak Ridge National Laboratory used new techniques to create a composite that increases the electrical current capacity of copper wires, providing a new material that can be scaled for use in ultra-efficient, power-dense electric vehicle traction motors.

Unmanned aerial vehicles help wheat breeders
Usually, breeders pick the best wheat lines by hand, but unmanned aerial vehicles that record certain measures of plant health can help breeders select wheat lines more efficiently.

Hydrogen vehicles might soon become the global norm
Roughly one billion cars and trucks zoom about the world's roadways.

Will automated vehicles cut parking revenue?
Benjamin Clark and Anne Brown of the University of Oregon used Seattle as a case study to find the association between TNC trips and on-street parking occupancy.

Influx of electric vehicles accelerates need for grid planning
A new PNNL report says the western US bulk power system can reliably support projected growth of up to 24 million electric vehicles through 2028, but challenges will arise as EV adoption grows beyond that threshold.

Battery breakthrough gives boost to electric flight and long-range electric cars
Researchers at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab), in collaboration with Carnegie Mellon University, have developed a new battery material that could enable long-range electric vehicles that can drive for hundreds of miles on a single charge, and electric planes called eVTOLs for fast, environmentally friendly commutes.

Research determines financial benefit from driving electric vehicles
Motorists can save as much as $14,500 on fuel costs over 15 years by driving an electric vehicle instead of a similar one fueled by gasoline, according to a new analysis conducted by researchers at the U.S.

Read More: Electric Vehicles News and Electric Vehicles Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.