IU researchers grow hairy skin from human stem cells

June 04, 2020

Building on years of groundbreaking discoveries in stem cell research, scientists from Indiana University School of Medicine and Harvard Medical School have determined how to grow hairy skin using human stem cells--developing one of the most complex skin models in the world.

The study, published June 3 in Nature, shows that skin generated from pluripotent stem cells can be successfully grafted on a nude mouse to grow human skin and hair follicles. That discovery could lead to future studies in skin reconstruction, disease modeling and treatment.

"This is the first study to show that human hair can be grown completely from stem cells in a dish, which has been a goal of the skin biology community for decades," said Karl Koehler, PhD, assistant professor of otolaryngology--head and neck surgery at Harvard Medical School and Boston Children's Hospital.

The team of researchers was led by Koehler, who's also an adjunct assistant professor of otolaryngology--head and neck surgery at IU School of Medicine, and Jiyoon Lee, PhD, a research associate in Koehler's lab.

The group's findings originate from several years of stem cell research within the Department of Otolaryngology--Head and Neck Surgery at IU School of Medicine. In 2013, scientists created inner ear tissue from mouse embryonic stem cells using a three-dimensional cell culture method. In 2017, they developed a method to grow inner ear tissue from human stem cells, and in 2018, the researchers grew hairy skin in a dish using mouse stem cells, a scientific first.

Through the three-dimensional culture technique developed in past experiments, the team incubated human stem cells for about 150 days in a ball-shaped cluster of cells, called a skin organoid. The interior of the aggregate of cells represent the top layer of skin (the epidermis) and the outside of the cluster develops the bottom layer of skin (the dermis).

"We've developed a new cooking recipe for generating human skin that produces hair follicles after about 70 days in culture," Koehler said. "When the hair follicles grow, the roots extend outward radially. It's a bizarre-looking structure, appearing almost like a deep-sea creature with tentacles coming out from it."

After the incubation period, researchers tested whether skin organoids could integrate on the skin of nude mice. More than half of the organoids they grafted on the mice grew human hair follicles. The skin organoid developed from culture is akin to fetal facial skin and hair, Koehler said.

The experiments show that organoid generated hairy skin can integrate into mouse skin, Koehler said, which suggests potential applications in skin and facial reconstruction. Physicians typically perform skin grafts in surgery, meaning the removal of skin from one area of the body to transplant on skin that's been wounded.

"This could be a huge innovation, providing a potentially unlimited source of soft tissue and hair follicles for reconstructive surgeries," said Lee, the first author of the study.

Taha Shipchandler, MD, associate professor of clinical otolaryngology--head and neck surgery at IU School of Medicine and one of the paper's authors, specializes in facial plastic and reconstructive surgery. Skin regeneration is of great interest for treating patients, he said.

"If we can harness this growth into a medium, and easily apply it to patients, it would change the way we treat many injuries or reconstructions," Shipchandler said. "This would have a profound effect on the medical field."

The other potential uses of hairy skin organoids vary widely, from developing drug or gene therapies for congenital skin disorders to recreating the earliest stages of skin cancer formation. In addition, more research is needed to analyze the development of sensory neurons and Merkel cells--specialized touch sensing cells of the skin--bundled within the organoid hair follicles, Koehler said, adding that the neurons potentially mimic the nerves mediating touch sensations.

"We're setting up experiments where we wiggle the hairs and see if the neurons activate," Koehler said, "as proof of concept that our skin can respond to touch in some way."
-end-
This research was supported by the Ralph W. and Grace M. Showalter Trust, Indiana Clinical Translational Sciences Institute, the Indiana Center for Biomedical Innovation and the National Institutes of Health.

Indiana University School of Medicine

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.