Cord blood cells improve rats' neurological recovery from brain injury, new study finds

June 05, 2002

Tampa, FL (June 5, 2002) -- Intravenous injections of cells from human umbilical cord blood improved the neurological and motor function of rats recovering from severe traumatic brain injury, researchers at Henry Ford Health Sciences Center, Detroit, MI, and the University of South Florida, Tampa, FL, found.

The study appears in tomorrow's (June 6) issue of the journal Cell Transplantation, a special issue that focuses on emerging approaches in neural transplantation and brain repair. It is one of several articles exploring the therapeutic potential of human umbilical cord blood (HUCB) cells as an alternative to embryonic stem cells.

While studies of cellular therapies continue to grow in importance, the emphasis has been on neurological diseases like Parkinson's disease and stroke, and, more recently, on spinal cord injury.

"This study is the first to suggest that human umbilical cord blood may be a novel way to treat traumautic brain injury, a significant cause of death and disability for adolescents and young adults," said report co-author Paul R. Sanberg, PhD, DSc, director of the USF Center for Aging and Brain Repair.

"The results certainly raise some interesting questions about the mechanisms of recovery," said Juan Sanchez-Ramos, PhD, MD, Helen Ellis professor of neurology and director of stem cell research at the USF Center for Aging and Brain Repair. "It appears that the trophic factors and cytokines from cord blood help promote the brain's self-generated repair of damaged tissue."

"These findings were consistent with the therapeutic benefit we obtained using cord blood to treat stroke in rats," said Michael Chopp, PhD, a neuroscientist at HFHSC and lead author of the report. This earlier study was published last November in the journal Stroke.

"Cord blood is readily available, noncontroversial and produces therapeutic benefit by stimulating endogenous restorative responses in the injured brain," Dr. Chopp said.

HUCB cells were injected intravenously into the tail veins of rats 24 hours after traumatic brain injury. At both 14 and 28 days after treatment, the rats receiving cell transfusions showed greater improvements in movement, balance and reflex responses than brain-injured rats receiving a placebo or no treatment.

The cord blood cells migrated to the region of the brain injury. A small portion took on the characteristics of immature neurons and other brain cells known as astrocytes. Some others integrated into the brain's blood vessels.

Only a limited number of HUCB cells drawn to the area of brain injury actually expressed proteins typical of those in early neural cells.

Umbilical cord blood contains a small percentage of primitive stem cells -- totally undifferentiated cells with the potential to develop into any one of the specialized tissues in the body, including blood, skin, muscle or nerve cells.

"It is unlikely that hastened recovery from the trauma could be solely attributed to such small numbers of stem cells transforming into neural cells," Dr. Sanchez-Ramos said.

Some HUCB cells that became part of brain tissue surrounding the injury expressed characteristics of endothelial cells lining the brain blood vessels. This suggests the injected cells may help regenerate injured vessels, Dr. Sanchez-Ramos said.

A second study in Cell Transplantation , by USF neuroscientist Tanja Zigova, PhD, reported that some undifferentiated HUCB cells transplanted into the developing brains of neonatal rats begin to appear like nerve cells and express certain proteins found only in neurons and glial cells. The findings suggest that at least some of the transplanted HUCB cells took on the characteristics of neural cells in response to cues from the young brain.

Researchers at the USF Center for Aging and Brain Repair are continuing studies to identify and expand the stem-cell portion of HUBC and to define how cord blood cells promote brain recovery.

The HUCB studies were suppported by Saneron CCEL Therapeutics Inc., an affiliate of Cryo-Cell International Inc., a company that collects and stores umbilical cord blood. A State of Florida High Tech Corridor grant also funded the research.

Other researchers working on the two studies were Dunyue Lu, MD; Asim Mahmood, MD; and Lei Wang, MD, all of HFHSC; and Shijie Song, MD; Alison Willing, PhD; Jennifer Hudson; Mary Newman; and Samuel Saporta, PhD, all from USF.
-end-


University of South Florida (USF Health)

Related Aging Articles from Brightsurf:

Surprises in 'active' aging
Aging is a process that affects not only living beings.

Aging-US: 'From Causes of Aging to Death from COVID-19' by Mikhail V. Blagosklonny
Aging-US recently published ''From Causes of Aging to Death from COVID-19'' by Blagosklonny et al. which reported that COVID-19 is not deadly early in life, but mortality increases exponentially with age - which is the strongest predictor of mortality.

Understanding the effect of aging on the genome
EPFL scientists have measured the molecular footprint that aging leaves on various mouse and human tissues.

Muscle aging: Stronger for longer
With life expectancy increasing, age-related diseases are also on the rise, including sarcopenia, the loss of muscle mass due to aging.

Aging memories may not be 'worse, 'just 'different'
A study from the Department of Psychological & Brain Sciences in Arts & Sciences adds nuance to the idea that an aging memory is a poor one and finds a potential correlation between the way people process the boundaries of events and episodic memory.

A new biomarker for the aging brain
Researchers at the RIKEN Center for Biosystems Dynamics Research (BDR) in Japan have identified changes in the aging brain related to blood circulation.

Scientists invented an aging vaccine
A new way to prevent autoimmune diseases associated with aging like atherosclerosis, Alzheimer's disease, and Parkinson's disease was described in the article.

The first roadmap for ovarian aging
Infertility likely stems from age-related decline of the ovaries, but the molecular mechanisms that lead to this decline have been unclear.

Researchers discover new cause of cell aging
New research from the USC Viterbi School of Engineering could be key to our understanding of how the aging process works.

Deep Aging Clocks: The emergence of AI-based biomarkers of aging and longevity
The advent of deep biomarkers of aging, longevity and mortality presents a range of non-obvious applications.

Read More: Aging News and Aging Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.