PET/CT offers 'superior' view of atherosclerosis plaque, may identify those at risk for heart attack

June 05, 2006

SAN DIEGO, Calif.--Positron emission tomography (PET) in combination with computed tomography (CT) offers a "superior" view of atherosclerosis plaque inflammation--so much so that it may eventually be used to identify individuals who are at high risk for heart attack or stroke, according to researchers at Massachusetts General Hospital in Boston. Their findings were released during SNM's 53rd Annual Meeting June 3-7 in San Diego.

"The future is using PET/CT--and other developing technologies--to assess plaques that are biologically active with deadly consequences when they misbehave," said Ahmed Tawakol, cardiologist and co-director of the Cardiac MR/PET/CT Program at Massachusetts General Hospital. "PET/CT in combination is more powerful than either PET or CT alone, providing us with an enriched data set," added the co-author of "Combined PET/CT Assessment of Carotid Plaques: A Human Histopathological Study." He explained, "In investigating the use of today's imaging technologies to predict those individuals with high risk for stroke or heart attack, we determined we can possibly improve on current risk stratification strategies by identifying patients as being at low, moderate, high or very high risk for developing a heart attack or stroke." PET/CT "may allow us to identify patients at highest risk for heart attacks or strokes, so physicians can focus the appropriate medical attention on them more quickly and more aggressively," said Tawakol. In addition, it "might allow us to reclassify individuals previously thought to be at high risk. Biologically inactive plaques suggest a moderate or even low risk, thereby sparing patients more aggressive interventions," he added.

Atherosclerosis is the process in which deposits of fats, cholesterol, cellular waste products and other substances--called plaque--build up in the inner lining of an artery. This may limit blood flow through the carotid arteries, which supply blood to the head and neck. More than 71 million Americans have one or more forms of cardiovascular disease, which claims more lives than cancer, accidents and HIV (AIDS) combined.

This study benefits those individuals with carotid disease and opens the exploration of the biological questions of atherosclerosis and related heart diseases, said Tawakol. "This molecular imaging research opens the door for the testing of new and future therapies and the identification of promising new drugs," he added.

PET/CT imaging enables the collection of both biological and anatomical information during a single exam, with PET picking up metabolic signals of body cells and tissues and CT offering a detailed picture of internal anatomy. "We establish that PET in combination with CT is superior to PET alone for characterization of plaque inflammation," said Tawakol, explaining that the current study builds on prior observations that PET is useful in characterizing plaque formation. "There is a lot of interest in learning how to stabilize or pacify plaques, and we may be able to test this," he noted, saying additional research might determine if a cardiac event can be predicted by identifying plaque inflammation.

"This is very exciting work," said Josef Machac, SNM's Scientific Program Committee cardiovascular vice chair. "The idea is that atherosclerosis comes in different 'flavors,' and the challenge is to predict whether patients are at high risk for having a stroke or heart attack," added the director of the Clinical PET Center and nuclear medicine at Mount Sinai School of Medicine in New York City. He continued, "This research points the way by examining carotid plaque function from PET and its structure from CT."
-end-
Abstract: A. Tawakol, D. Vermylen, J. Swanson and J. Moloo, medicine/cardiology, Massachusetts General Hospital, Boston; R. Curry, A. Morss, U. Hoffmann, T.J. Brady and A.J. Fischman, radiology, Massachusetts General Hospital, Boston; and S. Bedri, pathology, Massachusetts General Hospital, Boston, "Combined PET/CT Assessment of Carotid Plaques: A Human Histopathological Study," SNM's 53rd Annual Meeting, June 3-7, 2006, Scientific Paper 9.

About SNM
SNM is holding its 53rd Annual Meeting June 3-7 at the San Diego Convention Center. Research topics for the 2006 meeting include molecular imaging in clinical practice in the fight against cancer; the role of diagnostic imaging in the management of metastatic bone disease; metabolic imaging for heart disease; neuroendocrine and brain imaging; new agents for imaging infection and inflammation; and an examination of dementia, neurodegeneration, movement disorders and thyroid cancer.

SNM is an international scientific and professional organization of more than 16,000 members dedicated to promoting the science, technology and practical applications of molecular and nuclear imaging to diagnose, manage and treat diseases in women, men and children. Founded more than 50 years ago, SNM continues to provide essential resources for health care practitioners and patients; publish the most prominent peer-reviewed resource in the field; sponsor research grants, fellowships and awards; host the premier annual meeting for medical imaging; and train physicians, technologists, scientists, physicists, chemists and radiopharmacists in state-of-the-art imaging procedures and advances. SNM members have introduced--and continue to explore--biological and technological innovations in medicine that noninvasively investigate the molecular basis of diseases, benefiting countless generations of patients. SNM is based in Reston, Va.; additional information can be found online at http://www.snm.org.


Society of Nuclear Medicine

Related Heart Attack Articles from Brightsurf:

Top Science Tip Sheet on heart failure, heart muscle cells, heart attack and atrial fibrillation results
Newly discovered pathway may have potential for treating heart failure - New research model helps predict heart muscle cells' impact on heart function after injury - New mass spectrometry approach generates libraries of glycans in human heart tissue - Understanding heart damage after heart attack and treatment may provide clues for prevention - Understanding atrial fibrillation's effects on heart cells may help find treatments - New research may lead to therapy for heart failure caused by ICI cancer medication

Molecular imaging identifies link between heart and kidney inflammation after heart attack
Whole body positron emission tomography (PET) has, for the first time, illustrated the existence of inter-organ communication between the heart and kidneys via the immune system following acute myocardial infarction.

Muscle protein abundant in the heart plays key role in blood clotting during heart attack
A prevalent heart protein known as cardiac myosin, which is released into the body when a person suffers a heart attack, can cause blood to thicken or clot--worsening damage to heart tissue, a new study shows.

New target identified for repairing the heart after heart attack
An immune cell is shown for the first time to be involved in creating the scar that repairs the heart after damage.

Heart cells respond to heart attack and increase the chance of survival
The heart of humans and mice does not completely recover after a heart attack.

A simple method to improve heart-attack repair using stem cell-derived heart muscle cells
The heart cannot regenerate muscle after a heart attack, and this can lead to lethal heart failure.

Mount Sinai discovers placental stem cells that can regenerate heart after heart attack
Study identifies new stem cell type that can significantly improve cardiac function.

Fixing a broken heart: Exploring new ways to heal damage after a heart attack
The days immediately following a heart attack are critical for survivors' longevity and long-term healing of tissue.

Heart patch could limit muscle damage in heart attack aftermath
Guided by computer simulations, an international team of researchers has developed an adhesive patch that can provide support for damaged heart tissue, potentially reducing the stretching of heart muscle that's common after a heart attack.

How the heart sends an SOS signal to bone marrow cells after a heart attack
Exosomes are key to the SOS signal that the heart muscle sends out after a heart attack.

Read More: Heart Attack News and Heart Attack Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.