New study suggests 'planemos' may spawn planets and moons

June 05, 2006

Forget our traditional ideas of where a planetary system forms -- new research led by a University of Toronto astronomer reveals that planetary nurseries can exist not only around stars but also around objects that are themselves not much heftier than Jupiter. It suggests that miniature versions of the solar system may circle objects that are some 100 times less massive than our sun.

That's the dramatic conclusion of two studies being presented Monday, June 5 at the American Astronomical Society meeting in Calgary by Professor Ray Jayawardhana and his colleagues. The new findings show that objects only a few times more massive than Jupiter are born with disks of dust and gas, the raw material for planet making. Research done by Jayawardhana's group and others in recent years had shown that disks are common around failed stars known as "brown dwarfs". Now, they report, the same appears to be true for their even punier cousins, sometimes called planetary mass objects or "planemos." These objects, discovered within the past five years, have masses similar to those of extra-solar planets, but they are not in orbit around stars -- instead, they float freely through space.

"Now that we know of these planetary mass objects with their own little infant planetary systems, the definition of the word 'planet' has blurred even more," says Jayawardhana, an associate professor of astronomy and astrophysics. "In a way, the new discoveries are not too surprising -- after all, Jupiter must have been born with its own disk, out of which its bigger moons formed."

Unlike Jupiter, however, these planemos are not circling stars. In the first study, Jayawardhana and Valentin Ivanov of the European Southern Observatory (ESO) in Chile used two of ESO's telescopes -- the 8.2-metre Very Large Telescope and the 3.5-metre New Technology Telescope -- to obtain optical spectra of six candidates identified recently by researchers at the University of Texas at Austin. Two of the six turned out to have masses between five to 10 times that of Jupiter while two others are a tad heftier, at 10 to 15 times Jupiter's mass. All four of these objects are just a few million years old and are located in star-forming regions about 450 light-years from Earth. The planemos show infrared emission from dusty disks that may evolve into miniature planetary systems over time.

In the other study, Subhanjoy Mohanty (Harvard-Smithsonian Center for Astrophysics, CfA), Jayawardhana (UofT), Nuria Huelamo (ESO) and Eric Mamajek (CfA) used the Very Large Telescope to obtain infrared images and spectra of a planetary mass companion discovered two years ago around a young brown dwarf that is itself about 25 times the mass of Jupiter. The brown dwarf, dubbed 2M1207 for short and located 170 light-years from Earth, was known to be surrounded by a disk. Now, this team has found evidence for a disk around the eight-Jupiter-mass companion as well. Researchers think the pair probably formed together, just like a binary star system, instead of the companion forming in a disk around the brown dwarf. Moreover, Jayawardhana says, it is quite likely that smaller planets or moons could now form in the disk around each one.

Both sets of discoveries point to objects not much more massive than Jupiter forming the same way as stars like the sun, and perhaps being accompanied by their own retinues of small planets. "The diversity of worlds out there is truly remarkable," Jayawardhana adds. "Nature often seems more prolific than our imagination."
An image illustrating the finding will be available after the embargo time at

CONTACT: Professor Ray Jayawardhana
Office: 416-946-7291
Cell: 647-233-7749
Hotel in Calgary (June 4 to 6): 403-717-1234

Sonnet L'Abbé
U of T Strategic Communications

University of Toronto

Related Solar System Articles from Brightsurf:

Ultraviolet shines light on origins of the solar system
In the search to discover the origins of our solar system, an international team of researchers, including planetary scientist and cosmochemist James Lyons of Arizona State University, has compared the composition of the sun to the composition of the most ancient materials that formed in our solar system: refractory inclusions in unmetamorphosed meteorites.

Second alignment plane of solar system discovered
A study of comet motions indicates that the Solar System has a second alignment plane.

Pressure runs high at edge of solar system
Out at the boundary of our solar system, pressure runs high.

What a dying star's ashes tell us about the birth of our solar system
A UA-led team of researchers discovered a dust grain forged in a stellar explosion before our solar system was born.

What scientists found after sifting through dust in the solar system
Two recent studies report discoveries of dust rings in the inner solar system: a dust ring at Mercury's orbit, and a group of never-before-detected asteroids co-orbiting with Venus, supplying the dust in Venus' orbit.

Discovered: The most-distant solar system object ever observed
A team of astronomers has discovered the most-distant body ever observed in our solar system.

Discovery of the first body in the Solar System with an extrasolar origin
Asteroid 2015 BZ509 is the very first object in the Solar System shown to have an extrasolar origin.

First interstellar immigrant discovered in the solar system
A new study has discovered the first known permanent immigrant to our solar system.

A star disturbed the comets of the solar system in prehistory
About 70,000 years ago, when the human species was already on Earth, a small reddish star approached our solar system and gravitationally disturbed comets and asteroids.

Scientists detect comets outside our solar system
Scientists from MIT and other institutions, working closely with amateur astronomers, have spotted the dusty tails of six exocomets -- comets outside our solar system -- orbiting a faint star 800 light years from Earth.

Read More: Solar System News and Solar System Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to