The potential impact of olfactory stem cells as therapy reported in Cell Transplantation

June 05, 2012

Tampa, Fla. (June 5 , 2012) - A study characterizing the multipotency and transplantation value of olfactory stem cells, as well as the ease in obtaining them, has been published in a recent issue of Cell Transplantation (20:11/12), now freely available on-line at http://www.ingentaconnect.com/content/cog/ct/.

"There is worldwide enthusiasm for cell transplantation therapy to repair failing organs," said study lead author Dr. Andrew Wetzig of the King Faisal Specialist Hospital and Research Centre in Riyadh, Saudi Arabia. "The olfactory mucosa of a patient's nose can provide cells that are potentially significant candidates for human tissue repair."

According to the study authors, olfactory neural stem cells can be derived from a patient's own cells, they are readily available by a minimally invasive biopsy technique, and they can be expanded in vitro. The cells are plentiful because the olfactory epithelium undergoes neurogenesis and continual replacement of sensory neurons throughout adult life.

"Using the rat as our animal model source, we examined the basic aspects of olfactory neural stem cell biology and its potential for self-renewal and phenotypic expression in various circumstances," said Dr. Wetzig. "Previously, we found that they have performed well in pre-clinical models of disease and transplantation and seem to emulate a wound healing process where the cells acquire the appropriate phenotype in an apparently orderly fashion over time."

The researchers concluded that the olfactory neurospheres contain stem cells whose capacity for differentiation is triggered by signals from the immediate environmental niche.

"Stem cell numbers were shown to be enriched by our culture methods," explained Dr. Wetzig. "We also demonstrated that when adult olfactory stem cells are transplanted into an environmental niche different from that of their origin, they demonstrate multipotency by acquiring the phenotype of the resident cells."

"This study highlights another potential source of stem cells that has shown some degree of promise in a number of studies" said Dr. John Sladek, professor of neurology and pediatrics at the University of Colorado School of Medicine. "Their relatively easy accessibility and multipotent properties are important factors that could rank these cells competitively with other stem cells thus giving them a potential impact as an excellent source for cell therapy".
-end-
Contact Corresponding Author: Dr. Wayne Murrell, Vilhelm Magnus Center, Institute for Surgical Research, Rikshospital, University of Oslo, Norway 0027.
Tel. (47) 23071405
Fax. (47) 23071397
Email Wayne.Murrell@rr-research.no

Citation: Wetzig, A.; Mackay-Sim, A,; Murrell, W. Characterization of olfactory stem cells. Cell Transplant. 20 (11/12):1673-1691; 2011.

The Coeditor-in-chief's for Cell Transplantation are at the Diabetes Research Institute, University of Miami Miller School of Medicine and Center for Neuropsychiatry, China Medical University Hospital, TaiChung, Taiwan. Contact, Camillo Ricordi, MD at ricordi@miami.edu or Shinn-Zong Lin, MD, PhD at shinnzong@yahoo.com.tw or David Eve, PhD at celltransplantation@gmail.com

News release by Florida Science Communications

Cell Transplantation Center of Excellence for Aging and Brain Repair

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.