Mothers' teen cannabinoid exposure may increase response of offspring to opiate drugs

June 05, 2012

GRAFTON, Mass. (June 5, 2012)--Mothers who use marijuana as teens--long before having children--may put their future children at a higher risk of drug abuse, new research suggests.

Researchers in the Neuroscience and Reproductive Biology section at the Cummings School of Veterinary Medicine conducted a study to determine the transgenerational effects of cannabinoid exposure in adolescent female rats. For three days, adolescent rats were administered the cannabinoid receptor agonist WIN-55, 212-2, a drug that has similar effects in the brain as THC, the active ingredient in marijuana. After this brief exposure, they remained untreated until being mated in adulthood.

The male offspring of the female rats were then measured against a control group for a preference between chambers that were paired with either saline or morphine. The rats with mothers who had adolescent exposure to WIN-55,212-2 were significantly more likely to opt for the morphine-paired chamber than those with mothers who abstained. The results suggest that these animals had an increased preference for opiate drugs.

The study was published in the Journal of Psychopharmocology and funded by the National Institutes of Health.

"Our main interest lies in determining whether substances commonly used during adolescence can induce behavioral and neurochemical changes that may then influence the development of future generations," said Research Assistant Professor John J. Byrnes, the study's lead author, "We acknowledge that we are using rodent models, which may not fully translate to the human condition. Nevertheless, the results suggest that maternal drug use, even prior to pregnancy, can impact future offspring."

Byrnes added that much research is needed before a definitive connection is made between adolescent drug use and possible effects on future children.

The study builds on earlier findings by the Tufts group, most notably a study published last year in Behavioral Brain Research by Assistant Professor Elizabeth Byrnes that morphine use as adolescent rats induces changes similar to those observed in the present study.

Other investigators in the field have previously reported that cannabinoid exposure during pregnancy (in both rats and humans) can affect offspring development, including impairment of cognitive function, and increased risk of depression and anxiety.
-end-
Byrnes JJ, Johnson NL, Schenk ME, Byrnes EM. Cannabinoid exposure in adolescent female rats induces transgenerational effects on morphine conditioned place preference in male offspring [published online ahead of print April 15 2012]. J Psychopharmacol, 2012. DOI: 10.1177/0269881112443745

About the Cummings School of Veterinary Medicine at Tufts University

Founded in 1978 in North Grafton, Mass., Cummings School of Veterinary Medicine at Tufts University is internationally esteemed for academic programs that impact society and the practice of veterinary medicine; three hospitals and two clinics that combined log more than 80,000 animal cases each year; and groundbreaking research that benefits animal, public, and environmental health.

Tufts University, Health Sciences Campus

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.