Nav: Home

Story tips from the Department of Energy's Oak Ridge National Laboratory, June 2017

June 05, 2017

Hydrocarbons - Better oil and gas seeking

Finding optimal locations for extracting petroleum and natural gas from shale could become more economical and efficient thanks to a new approach developed by Oak Ridge National Laboratory. The research team combined two existing statistical models and applied them to publicly available geographic data to accurately characterize the availability of hydrocarbons in five, high-producing shale plays in the United States and Canada. "Mid-size oil and gas companies, plus those outside of industry, could leverage this method to reduce overall production, extraction time and cost and the potential of environmental disturbances," ORNL's Joanna McFarlane said. The research, published in the Journal of Natural Gas Science and Engineering, was led by former student Elisabeth Gallmeier with Shichen Zhang, who both participated in Oak Ridge High School's Senior Math Thesis program. [Contact: Sara Shoemaker, (865) 576-9219; shoemakerms@ornl.gov]

Image: https://www.ornl.gov/sites/default/files/news/images/01%20Better_oil_gas_seeking.jpg

Caption: A novel approach developed by Oak Ridge National Laboratory could streamline processes for locating oil and natural gas in shale.

Nanoscience - Inseparable states of matter

An Oak Ridge National Laboratory-led team discovered a link between electrochemistry at the surface and ferroelectricity within the bulk material of ultrathin crystalline films. The findings, published inNature Physics, explain a decade of anomalous thin-film behavior observations and offers a new mode for control. "We show that surface chemistry can be a third method, besides using traditional substrate strain and octahedral rotation, to achieve similar effects for memories, tunneling junctions, memristors and neuromorphic computing," ORNL's Sergei Kalinin said. The research team will explore new opportunities for controlling ferroelectric materials. For example, because light couples weakly to ferroelectricity but strongly to surface chemistry, the discovery may accelerate designs of next-generation detectors and photovoltaics. [Contact: Dawn Levy, (865) 576-6448; levyd@ornl.gov]

Image: https://www.ornl.gov/sites/default/files/news/images/02%20Inseparable_states_matter.jpg

Caption: ORNL's Sergei Kalinin and Rama Vasudevan (far left) used scanning probe microscopy to discover inseparable interplay between bulk ferroelectricity and surface electrochemistry in a 30-nanometer-thick film of barium titanate, a crystalline material employed in electronics. Photo by Jason Richards, Oak Ridge National Laboratory/Dept. of Energy

Magnets - Momentum licenses ORNL technology

Dallas-based Momentum Technologies has non-exclusively licensed Oak Ridge National Laboratory's 3D-printed magnet technology and plans to commercialize the first 3D-printed magnet made from recycled materials. ORNL has demonstrated that 3D-printed magnets can outperform those created by traditional methods and could be used in electric vehicles, wind turbines and high-speed rail. Momentum holds two other ORNL technology licenses related to the recovery of rare earth minerals and magnets from electronic waste. "Bringing together these technologies through the Department of Energy's Critical Materials Institute and ORNL allows us to create a sustainable domestic supply of low-cost magnets made from recycled materials recovered from hard disk drives," said Momentum's CEO Preston Bryant. [Contact: Stephanie Seay, (865) 576-9894; seaysg@ornl.gov]

Image: https://www.ornl.gov/sites/default/files/news/images/03%20Momentum_licenses_ORNL_tech.jpg

Caption: Momentum Technologies has licensed Oak Ridge National Laboratory's 3D-printed magnet technology and plans to produce the first 3D-printed magnet made from recycled materials for use in electric vehicles, wind turbines and high-speed rail.

Catalysis - Simple synthesis

A "lucky finding" by Oak Ridge National Laboratory scientists has led to a simple, nontoxic method to synthesize inexpensive ordered mesoporous materials from plant products. These materials will allow larger molecules to transfer more easily during catalysis, separations and other energy-related applications, said ORNL's Pengfei Zhang, whose team was originally evaluating tannin, a biomolecule found in plants, for other studies. As they mixed tannin with metallic salt cross-linkers, without applying heat or solvents, the molecules surprisingly self-assembled into hexagonal cylinder-shaped mesostructures with large, uniform pore size. The solid-state process took only one hour as opposed to days when using traditional solution methods. Results of the synthesis process are detailed inNature Communications. [Contact: Sara Shoemaker, (865) 976-9219; shoemakerms@ornl.gov]

Image: https://www.ornl.gov/sites/default/files/news/images/04%20Simple_synthesis.jpg

Caption: An ORNL-led team discovered a simpler, quicker nontoxic method to synthesize biomass materials without applying heat or solvents. The molecules self-assembled into large-pore-sized hexagonal cylinder-shaped mesostructures suitable for large molecule transfer during catalysis.

Materials - Transferring heat

Reducing the energy and water that power plants require to convert heat to electricity could become easier with a novel heat exchanger designed and 3D printed at Oak Ridge National Laboratory. A research team achieved a 500 percent increase in thermal conductivity using a new thermoplastic composite made of copper fibers mixed with nylon. Developed in collaboration with the University of Wisconsin, the material and design can be used in creating heat exchangers for other applications as well. "Additive manufacturing gives us the flexibility to customize the heat exchanger for the task, tailoring the design and scaling the size as needed," ORNL's Vlastimil Kunc said. [Contact: Kim Askey, (865) 946-1861; askeyka@ornl.gov]

Image: https://www.ornl.gov/sites/default/files/news/images/05%20Transferring_heat.jpg

Caption: At the Department of Energy's Manufacturing Demonstration Facility, a research team achieved a 500 percent increase in thermal conductivity using a thermoplastic composite made of copper fibers mixed with nylon.
-end-


DOE/Oak Ridge National Laboratory

Related Natural Gas Articles:

Visualizing chemical reactions, e.g. from H2 and CO2 to synthetic natural gas
Scientists at EPFL have designed a reactor that can use IR thermography to visualize dynamic surface reactions and correlate it with other rapid gas analysis methods to obtain a holistic understanding of the reaction in rapidly changing conditions.
Effects of natural gas assessed in study of shale gas boom in Appalachian basin
A new study estimated the cumulative effects of the shale gas boom in the Appalachian basin in the early 2000s on air quality, climate change, and employment.
The uncertain role of natural gas in the transition to clean energy
A new MIT study examines the opposing roles of natural gas in the battle against climate change -- as a bridge toward a lower-emissions future, but also a contributor to greenhouse gas emissions.
Natural-gas leaks are important source of greenhouse gas emissions in Los Angeles
Liyin He, a Caltech graduate student, finds that methane in L.A.'s air correlates with the seasonal use of gas for heating homes and businesses
Enhanced natural gas storage to help reduce global warming
Researchers have designed plastic-based materials that can store natural gas more effectively.
Natural gas storage research could combat global warming
To help combat global warming, a team led by Dr.
UT study shows how to produce natural gas while storing carbon dioxide
New research at The University of Texas at Austin shows that injecting air and carbon dioxide into methane ice deposits buried beneath the Gulf of Mexico could unlock vast natural gas energy resources while helping fight climate change by trapping the carbon dioxide underground.
Hydrogen-natural gas hydrates harvested by natural gas
A recent study has suggested a new strategy for stably storing hydrogen, using natural gas as a stabilizer.
Greener, more efficient natural gas filtration
MIT researchers have developed a new polymer membrane that can dramatically improve the efficiency of natural gas purification, while reducing its environmental impact.
Crystals that clean natural gas
A metal-organic framework that selectively removes impurities from natural gas could allow greater use of this cleaner fossil fuel.
More Natural Gas News and Natural Gas Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.