Nav: Home

Brain development and aging

June 05, 2017

The brain is a complex organ--a network of nerve cells, or neurons, producing thought, memory, action, and feeling. How does this complex system change from childhood to adulthood to late life in order to maintain optimal behavioral responses?

These questions were put to the test by a group of University of Miami psychologists who studied hundreds of fMRI brain scans, from two separate datasets, to see how the variability of brain signals changes or remains the same during a human lifespan.

The UM team analyzed hundreds of brain scans of participants, ranging in age from 6 to 86, who were all in a "resting state," which means they were not engaged in any particular task while in the fMRI scanner. The publicly available data, which is freely available to neuroimaging researchers, was acquired from the Nathan-Kline institute.

"Resting state is a misnomer because intrinsically your brain is always doing something. There is always something happening in the brain," said postdoctoral fellow Jason Nomi. "The scans we are looking at represent the baseline variability of ongoing activity in the brain at any given time. No one has really characterized this baseline across the lifespan."

Lucina Uddin, an associate professor of psychology in the UM College of Arts and Sciences, explains that studying the brain when it's in a resting state allows researchers to "basically look at the organization of the brain as it is without any extra stressors or stimuli. What we are looking at is the intrinsic organization of the brain and how it changes across the lifespan."

By analyzing the resting-state fMRI data, the researchers were able to see how regions of the brain change from moment to moment and how those changes show a pattern across age and participants. Their results demonstrated that, instead of an overall decrease in variability with aging, as earlier studies showed, the brain displayed regional differences, with some areas of the brain showing increases in variability across age while other areas showed a decrease.

"As certain areas of the brain become more variable, it seems to compensate in some ways for the other parts of the brain that are decreasing," said Aaron Heller, an assistant professor in the Psychology Department and senior author of the paper.

"These patterns of variability that we notice in the brain signals are what we think relates to the ability to respond to new challenges in the environment," added Nomi.

Heller says that the next step is to test whether these patterns of variability have an impact on behavior in ways that are important to understanding lifespan, aging, emotional regulation, and developmental disorders such as autism.
-end-
The study, "Moment-to-moment BOLD Signal Variability Reflects Regional Changes in Neural Flexibility Across the Lifespan," was published in The Journal of Neuroscience. The study, made possible with the help of a University of Miami Convergence Research Grant, is a collaborative effort of independent labs within the University of Miami Neuroimaging Facility within the Neuroscience Building on the Coral Gables campus.

Additional authors of the study include Taylor S. Bolt and Chiemeka Ezie in the Department of Psychology.

University of Miami

Related Aging Articles:

Brain development and aging
The brain is a complex organ -- a network of nerve cells, or neurons, producing thought, memory, action, and feeling.
Aging gracefully in the rainforest
In an article that appears in the current issue of Evolutionary Anthropology, researchers synthesize over 15 years of theoretical and empirical findings from long-term study of the Tsimane forager-farmers.
Reversing aging now possible!
DGIST's research team identified the mechanism of reversible recovery of aging cells by inducing lysosomal activation.
Brain-aging gene discovered
Researchers at Columbia University Medical Center have discovered a common genetic variant that greatly affects normal brain aging in older adults.
Aging can be good for you (if you're a yeast)
It's a cheering thought for anyone heading towards their golden years.
How eating less can slow the aging process
New research shows why calorie restriction made mice live longer and healthier lives.
Turning back the aging clock
By boosting genes that destroy defective mitochondrial DNA, researchers can slow down and potentially reverse an important part of the aging process.
Insilico Medicine launches a deep learned biomarker of aging, Aging.AI 2.0 for testing
Insilico Medicine, Inc., a company applying latest advances in deep learning to biomarker development, drug discovery and aging research, launched Aging.AI 2.0.
Substance with the potential to postpone aging
The coenzyme NAD+ plays a main role in aging processes.
What does a healthy aging cat look like?
Just as improved diet and medical care have resulted in increased life expectancy in humans, advances in nutrition and veterinary care have increased the life span of pet cats.

Related Aging Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".