Nav: Home

Fixing the role of nitrogen in coral bleaching

June 05, 2017

Excess nitrogen is shown to disrupt coral-algae symbiosis, triggering bleaching even in the absence of heat and light stress. With coral bleaching events intensifying as global sea temperatures rise, this is an important finding in the race to understand the mechanisms behind bleaching and ways to reduce the devastating impact on coral reefs1.

"Corals are remarkably adapted to thrive in the sun-lit, nutrient-poor waters of tropical oceans, mainly thanks to their intimate relationship with microscopic algae," said Dr. Claudia Pogoreutz of the Red Sea Research Center at KAUST. "In this relationship, corals regulate the algal growth and activity by limiting their access to nitrogen. This 'blackmailing' results in algae producing energy-rich sugars, through photosynthesis, for the coral animal."

Another microbial group--nitrogen-fixing microbes called diazotrophs--may play a key role in maintaining the productivity of the meta-organism by supplementing it with extra nitrogen for metabolism and growth. However, as increasing amounts of waste water, which is full of sugars and nitrogen, are pumped into our oceans, the delicate balance of this nitrogen cycle is in jeopardy. This could in turn exacerbate bleaching events.

The team, led by KAUST Associate Professor of Marine Science Christian Voolstra and in collaboration with scientists from University of Bremen in Germany, took a unique approach to examining how sugar enrichment and nitrogen disruption can contribute to coral bleaching by studying bleaching in the absence of heat and light stress.

"By working out how other environmental factors induce bleaching, we can identify similarities and previously overlooked processes that might explain what happens during bleaching caused by heat stress," explained KAUST Ph.D. student Nils Rädecker. "Samples from corals were placed in tanks in the KAUST aquaria labs. We added a sugar mixture to some of the tanks while others were kept as controls."

The sugar-enriched environment fueled the nitrogen-fixing microbes with extra energy, meaning they fixed more nitrogen. This excess nitrogen available to the coral animal upset the balance of nitrogen limitation to the algae, causing the breakdown of coral-algae symbiosis and triggering bleaching.

"This is the first study to highlight the importance of microbial processes like nitrogen fixation for coral health, and how disruptions to these processes may pose a previously unidentified threat under certain conditions," said Rädecker.

The researchers hope that highlighting the role of nitrogen in bleaching will prompt authorities worldwide to seriously tackle water pollution. While global climate change is undoubtedly the biggest threat to coral reefs, limiting further damage by cleaning up our oceans could help these fragile ecosystems survive.
-end-


King Abdullah University of Science & Technology (KAUST)

Related Nitrogen Articles:

How nitrogen-fixing bacteria sense iron
New research reveals how nitrogen-fixing bacteria sense iron - an essential but deadly micronutrient.
Corals take control of nitrogen recycling
Corals use sugar from their symbiotic algal partners to control them by recycling nitrogen from their own ammonium waste.
Foraging for nitrogen
As sessile organisms, plants rely on their ability to adapt the development and growth of their roots in response to changing nutrient conditions.
Inert nitrogen forced to react with itself
Direct coupling of two molecules of nitrogen: chemists from W├╝rzburg and Frankfurt have achieved what was thought to be impossible.
Researchers discover new nitrogen source in Arctic
Scientists have revealed that the partnership between an alga and bacteria is making the essential element nitrogen newly available in the Arctic Ocean.
Scientists reveal impacts of anthropogenic nitrogen discharge on nitrogen transport in global rivers
Scientists found that riverine dissolved inorganic nitrogen in the USA has increased primarily due to the use of nitrogen fertilizers.
Nitrogen gets in the fast lane for chemical synthesis
A new one-step method discovered by synthetic organic chemists at Rice University allows nitrogen atoms to be added to precursor compounds used in the design and manufacture of drugs, pesticides, fertilizers and other products.
Nitrogen fixation in ambient conditions
EPFL scientists have developed a uranium-based complex that allows nitrogen fixation reactions to take place in ambient conditions.
New regulators of nitrogen use in plants identified
Researchers have identified a set of gene regulators in plants that could help plants utilize nitrogen better, which would prevent ecological damage from excess nitrogen in the soil.
Boxing up ag field nitrogen
Scientists develop edge-of-field practices so growers can keep the early planting offered by the tile drains while protecting nearby streams-and the Gulf of Mexico-from nitrate contamination.
More Nitrogen News and Nitrogen Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.