Nav: Home

A stream of superfluid light

June 05, 2017

Scientists have known for centuries that light is composed of waves. The fact that light can also behave as a liquid, rippling and spiraling around obstacles like the current of a river, is a much more recent finding that is still a subject of active research. The "liquid" properties of light emerge under special circumstances, when the photons that form the light wave are able to interact with each other.

Researchers from CNR NANOTEC of Lecce in Italy, in collaboration with Polytechnique Montreal in Canada have shown that for light "dressed" with electrons, an even more dramatic effect occurs. Light become superfluid, showing frictionless flow when flowing across an obstacle and reconnecting behind it without any ripples.

Daniele Sanvitto, leading the experimental research group that observed this phenomenon, states that "Superfluidity is an impressive effect, normally observed only at temperatures close to absolute zero (-273 degrees Celsius), such as in liquid Helium and ultracold atomic gasses. The extraordinary observation in our work is that we have demonstrated that superfluidity can also occur at room-temperature, under ambient conditions, using light-matter particles called polaritons."

"Superfluidity, which allows a fluid in the absence of viscosity to literally leak out of its container", adds Sanvitto, "is linked to the ability of all the particles to condense in a state called a Bose-Einstein condensate, also known as the fifth state of matter, in which particles behave like a single macroscopic wave, oscillating all at the same frequency.

Something similar happens, for example, in superconductors: electrons, in pairs, condense, giving rise to superfluids or super-currents able to conduct electricity without losses."

These experiments have shown that it is possible to obtain superfluidity at room-temperature, whereas until now this property was achievable only at temperatures close to absolute zero. This could allow for its use in future photonic devices.

Stéphane Kéna-Cohen, the coordinator of the Montreal team, states: "To achieve superfluidity at room temperature, we sandwiched an ultrathin film of organic molecules between two highly reflective mirrors. Light interacts very strongly with the molecules as it bounces back and forth between the mirrors and this allowed us to form the hybrid light-matter fluid. In this way, we can combine the properties of photons such as their light effective mass and fast velocity, with strong interactions due to the electrons within the molecules. Under normal conditions, a fluid ripples and whirls around anything that interferes with its flow. In a superfluid, this turbulence is suppressed around obstacles, causing the flow to continue on its way unaltered".

"The fact that such an effect is observed under ambient conditions", says the research team, "can spark an enormous amount of future work, not only to study fundamental phenomena related to Bose-Einstein condensates with table-top experiments, but also to conceive and design future photonic superfluid-based devices where losses are completely suppressed and new unexpected phenomena can be exploited".
-end-
These experiments are published today in the June 5th issue of Nature Physics and are the result of work carried out at the Advanced Photonics Laboratories of the Institute of Nanotechnology of the Italian National Research Council in Lecce, in collaboration with Polytechnique Montreal in Canada, the Center of Excellence at Aalto University in Finland and Imperial College London.

Reference:

"Room-temperature superfluidity in a polariton condensate",

G. Lerario, A. Fieramosca, F. Barachati, D. Ballarini, K. S. Daskalakis, L. Dominici, M. De Giorgi, S. A. Maier, G. Gigli, S. Kéna-Cohen, D. Sanvitto,

(2017) Nature Physics, in press.

Polytechnique Montréal

Related Electrons Articles:

Deceleration of runaway electrons paves the way for fusion power
Fusion power has the potential to provide clean and safe energy that is free from carbon dioxide emissions.
Shining light on low-energy electrons
The classic method for studying how electrons interact with matter is by analyzing their scattering through thin layers of a known substance.
Ultrafast nanophotonics: Turmoil in sluggish electrons' existence
An international team of physicists has monitored the scattering behavior of electrons in a non-conducting material in real-time.
NASA mission uncovers a dance of electrons in space
NASA's MMS mission studies how electrons spiral and dive around the planet in a complex dance dictated by the magnetic and electric fields, and a new study revealed a bizarre new type of motion exhibited by these electrons.
'Hot' electrons don't mind the gap
Rice University scientists discover that 'hot' electrons can create a photovoltage about a thousand times larger than ordinary temperature differences in nanoscale gaps in gold wires.
More Electrons News and Electrons Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#535 Superior
Apologies for the delay getting this week's episode out! A technical glitch slowed us down, but all is once again well. This week, we look at the often troubling intertwining of science and race: its long history, its ability to persist even during periods of disrepute, and the current forms it takes as it resurfaces, leveraging the internet and nationalism to buoy itself. We speak with Angela Saini, independent journalist and author of the new book "Superior: The Return of Race Science", about where race science went and how it's coming back.