Nav: Home

Decomposing leaves are a surprising source of greenhouse gases

June 05, 2017

EAST LANSING, Mich. - Michigan State University scientists have pinpointed a new source of nitrous oxide, a greenhouse gas that's more potent than carbon dioxide. The culprit?

Tiny bits of decomposing leaves in soil.

This new discovery is featured in the current issue of Nature Geoscience, could help refine nitrous oxide emission predictions as well as guide future agriculture and soil management practices.

"Most nitrous oxide is produced within teaspoon-sized volumes of soil, and these so-called hot spots can emit a lot of nitrous oxide quickly," said Sasha Kravchenko, MSU plant, soil and microbial scientist and lead author of the study. "But the reason for occurrence of these hot spots has mystified soil microbiologists since it was discovered several decades ago."

Part of the vexation was due, in part, to scientists looking at larger spatial scales. It's difficult to study and label an entire field as a source of greenhouse gas emissions when the source is grams of soil harboring decomposing leaves. Changing the view from binoculars to microscopes will help improve N2O emission predictions, which traditionally are about 50 percent accurate, at best. Nitrous oxide's global warming potential is 300 times greater than carbon dioxide, and emissions are largely driven by agricultural practices.

"This work sheds new light on what drives emissions of nitrous oxide from productive farmlands," said John Schade, a program director for the National Science Foundation's Long-Term Ecological Research program, which co-funded the research with NSF's earth sciences division. "We need studies like this to guide the creation of sustainable agricultural practices necessary to feed a growing human population with minimal environmental impact."

To unlock the secrets of these N2O hotspots, Kravchenko and her team took soil samples from MSU's Kellogg Biological Station Long-term Ecological Research site. Then in partnership with scientists from the University of Chicago at Argonne National Laboratory, they examined the samples at Argonne's synchrotron scanning facilities, a much more powerful version of a medical CT scanner. The powerful X-ray scanner penetrated the soil and allowed the team to accurately characterize the environments where N2O is produced and emitted.

"We found that hotspot emissions happen only when large soil pores are present," Kravchenko said. "The leaf particles act as tiny sponges in soil, soaking up water from large pores to create a micro-habitat perfect for the bacteria that produce nitrous oxide."

Not as much N2O is produced in areas where smaller pores are present. Small pores, such as in clay soils, hold water more tightly so that it can't be soaked up by the leaf particles. Without additional moisture, the bacteria aren't able to produce as much nitrous oxide. Small pores also make it harder for the gas produced to leave the soil before being consumed by other bacteria.

"This study looked at the geometry of pores in soils as a key variable that affects how nitrogen moves through those soils," said Enriqueta Barrera, program director in NSF's earth sciences division. "Knowing this information will lead to new ways of reducing the emission of nitrous oxide from agricultural soils."

More specifically, future research will review which plant leaves contribute to higher N2O emissions. Plants with more nitrogen in their leaves, such as soybeans, will more than likely give off more N2O as their leaves decompose. Researchers also will look at leaf and root characteristics and see how they influence emissions.
-end-
Additional MSU scientists who were part of this study include: Ehsan Toosi, Andrey Guber, Nathaniel Ostrom and Phil Robertson. Researchers from Khyber Pakhtunkhwa Agricultural University Peshawar (Pakistan) and the Argonne National Lab also contributed to this paper.

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

For MSU news on the Web, go to MSUToday. Follow MSU News on Twitter at twitter.com/MSUnews.

Michigan State University

Related Greenhouse Gas Articles:

Models, observations not so far apart on planet's response to greenhouse gas emissions
Recent observations suggest less long-term warming, or climate sensitivity, than the predicted by climate models.
Gas hydrate breakdown unlikely to cause massive greenhouse gas release
A recent interpretive review of scientific literature performed by the US Geological Survey and the University of Rochester sheds light on the interactions of gas hydrates and climate.
New Marcellus development boom will triple greenhouse gas emissions from PA's natural gas
Natural gas production on Pennsylvania's vast black shale deposit known as the Marcellus Shale will nearly double by 2030 to meet growing demand, tripling Pennsylvania's greenhouse gas emissions from the natural gas sector relative to 2012 levels, according to a report published today by Delaware Riverkeeper Network.
UCI scientists identify a new approach to recycle greenhouse gas
Using a novel approach involving a key enzyme that helps regulate global nitrogen, University of California, Irvine molecular biologists have discovered an effective way to convert carbon dioxide (CO2) to carbon monoxide (CO) that can be adapted for commercial applications like biofuel synthesis.
Bacterial mechanism converts nitrogen to greenhouse gas
Cornell University researchers have discovered a biological mechanism that helps convert nitrogen-based fertilizer into nitrous oxide, an ozone-depleting greenhouse gas.
Drying Arctic soils could accelerate greenhouse gas emissions
A new study published in Nature Climate Change indicates soil moisture levels will determine how much carbon is released to the atmosphere as rising temperatures thaw Arctic lands.
'Watchdog' for greenhouse gas emissions
Mistakes can happen when estimating emissions of greenhouse gases such as carbon dioxide and methane.
Greenhouse gas mitigation potential from livestock sector revealed
Scientists have found that the global livestock sector can maintain the economic and social benefits it delivers while significantly reducing emissions, and in doing so help meet the global mitigation challenge.
Greenhouse gas 'bookkeeping' turned on its head
For the first time scientists have looked at the net balance of the three major greenhouse gases -- carbon dioxide, methane, and nitrous oxide -- for every region of Earth's landmasses.
Soil frost affects greenhouse gas emissions in the Arctic
Soil frost is a nearly universal process in the Arctic.

Related Greenhouse Gas Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Don't Fear Math
Why do many of us hate, even fear math? Why are we convinced we're bad at it? This hour, TED speakers explore the myths we tell ourselves and how changing our approach can unlock the beauty of math. Guests include budgeting specialist Phylecia Jones, mathematician and educator Dan Finkel, math teacher Eddie Woo, educator Masha Gershman, and radio personality and eternal math nerd Adam Spencer.
Now Playing: Science for the People

#517 Life in Plastic, Not Fantastic
Our modern lives run on plastic. It's in the computers and phones we use. It's in our clothing, it wraps our food. It surrounds us every day, and when we throw it out, it's devastating for the environment. This week we air a live show we recorded at the 2019 Advancement of Science meeting in Washington, D.C., where Bethany Brookshire sat down with three plastics researchers - Christina Simkanin, Chelsea Rochman, and Jennifer Provencher - and a live audience to discuss plastics in our oceans. Where they are, where they are going, and what they carry with them. Related links:...