Nav: Home

Injectable solution may provide weeks of glucose control

June 05, 2017

DURHAM, N.C. -- Biomedical engineers at Duke University have created a technology that might provide weeks of glucose control for diabetes with a single injection, which would be a dramatic improvement over current therapies. In primates, the treatment has been shown to last for weeks, rather than days.

By creating a controlled-release mechanism for a drug and optimizing its circulation time in the body, this new biopolymer injection has the potential to replace daily or weekly insulin shots with a once-a-month or twice-a-month treatments for type 2 diabetes.

The new therapy is described June 5 in Nature Biomedical Engineering.

Many current treatments for type 2 diabetes use a signaling molecule called glucagon-like peptide-1 (GLP1) to cause the pancreas to release insulin to control blood sugar. However, this peptide has a short half-life and is cleared from the body quickly.

To make treatments last longer, researchers have previously fused GLP1 with synthetic microspheres and biomolecules like antibodies, making them active for two to three days in mice and up to a week in humans. Despite this improvement, many of these treatments don't include a mechanism to control the rate of the peptide's release, causing the treatment's effectiveness to plateau after prolonged use.

Now researchers at Duke have created a technology that fuses GLP1 to a heat-sensitive elastin-like polypeptide (ELP) in a solution that can be injected into the skin through a standard needle. Once injected, the solution reacts with body heat to form a biodegradable gel-like "depot" that slowly releases the drug as it dissolves. In animal experiments, the resulting therapy provided glucose control up to three times longer than treatments currently on the market.

"Although we've pursued this method in the past, Kelli Luginbuhl, a grad student in my lab, systematically worked to vary the design of the delivery biopolymer at the molecular level and found a sweet spot that maximized the duration of the drug's delivery from a single injection," says Ashutosh Chilkoti, chair of the Department of Biomedical Engineering (BME) at Duke University and a senior author of the paper. "By doing so, we managed to triple the duration of this short-acting drug for type 2 diabetes, outperforming other competing designs."

Building upon their previous work with the drug and delivery system, researchers in the Chilkoti lab optimized their solution to regulate glucose levels in mice for 10 days after a single injection, up from the previous standard of 2-3 days.

In further tests, the team found that the optimized formulation improved glucose control in rhesus monkeys for more than 14 days after a single injection, while also releasing the drug at a constant rate for the duration of the trial.

"What's exciting about this work was our ability to demonstrate that the drug could last over two weeks in non-human primates," says Kelli Luginbuhl, a PhD student in the Chilkoti lab and co-author of the study. "Because our metabolism is slower than monkeys and mice, the treatment should theoretically last even longer in humans, so our hope is that this will be the first bi-weekly or once-a-month formulation for people with type 2 diabetes."

Currently, the longest-acting glucose control treatment on the market, dulaglutide, requires a once-weekly injection, while standard insulin therapies often have to be injected twice or more every day.

Despite a variety of treatment options, managing type 2 diabetes still poses a problem. Patients don't always reach their glycemic targets, and adherence to a treatment plan that relies on frequent, meal-specific dosing leaves room for human error. By limiting the number of injections a person will need to control their glucose levels, the researchers hope this new tool will improve treatment options for the disease.

The researchers now plan to study the immune response to repeated injections and test the material with other animal models. Chilkoti and Luginbuhl are also considering additional applications for the controlled-release system, such as delivering pain medication.

Chilkoti also said that because the drug is synthesized inside E. coli bacterial cultures instead of mammalian cells, it is cheaper and faster to produce, making it a potential target for use in developing countries once it's commercialized.
-end-
The research was funded by the National Institutes of Health (R01-DK091789). Chilkoti is a scientific advisor for PhaseBio Pharmaceuticals, which has licensed this technology from Duke.

CITATION: "An Injectable Depot of Glucagon-Like Peptide-1 Fused to a Thermosensitive Polypeptide With Zero-Order Release Kinetics Provides One Week of Glucose Control," Kelli M Luginbuhl, Jeffrey L Schaal, Bret Umstead, Eric Mastria, Xinghai Li, Samagya Banskota, Susan Arnold, Mark Feinglos, David D'Alessio, Ashutosh Chilkoti. Nature Biomedical Engineering, June 5, 2017. DOI: 10.1038/s41551-017-0078

Duke University

Related Diabetes Articles:

Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).
Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.
People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.
Diabetes, but not diabetes drug, linked to poor pregnancy outcomes
New research indicates that pregnant women with pre-gestational diabetes who take metformin are at a higher risk for adverse pregnancy outcomes -- such as major birth defects and pregnancy loss -- than the general population, but their increased risk is not due to metformin but diabetes.
New oral diabetes drug shows promise in phase 3 trial for patients with type 1 diabetes
A University of Colorado Anschutz Medical Campus study finds sotagliflozin helps control glucose and reduces the need for insulin in patients with type 1 diabetes.
More Diabetes News and Diabetes Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...