Nav: Home

Engineer unveils new spin on future of transistors with novel design

June 05, 2017

An engineer with the Erik Jonsson School of Engineering and Computer Science at The University of Texas at Dallas has designed a novel computing system made solely from carbon that might one day replace the silicon transistors that power today's electronic devices.

"The concept brings together an assortment of existing nanoscale technologies and combines them in a new way," said Dr. Joseph S. Friedman, assistant professor of electrical and computer engineering at UT Dallas who conducted much of the research while he was a doctoral student at Northwestern University.

The resulting all-carbon spin logic proposal, published by lead author Friedman and several collaborators in the June 5 issue of the online journal Nature Communications, is a computing system that Friedman believes could be made smaller than silicon transistors, with increased performance.

Today's electronic devices are powered by transistors, which are tiny silicon structures that rely on negatively charged electrons moving through the silicon, forming an electric current. Transistors behave like switches, turning current on and off.

In addition to carrying a charge, electrons have another property called spin, which relates to their magnetic properties. In recent years, engineers have been investigating ways to exploit the spin characteristics of electrons to create a new class of transistors and devices called "spintronics."

Friedman's all-carbon, spintronic switch functions as a logic gate that relies on a basic tenet of electromagnetics: As an electric current moves through a wire, it creates a magnetic field that wraps around the wire. In addition, a magnetic field near a two-dimensional ribbon of carbon -- called a graphene nanoribbon -- affects the current flowing through the ribbon. In traditional, silicon-based computers, transistors cannot exploit this phenomenon. Instead, they are connected to one another by wires. The output from one transistor is connected by a wire to the input for the next transistor, and so on in a cascading fashion.

In Friedman's spintronic circuit design, electrons moving through carbon nanotubes -- essentially tiny wires composed of carbon -- create a magnetic field that affects the flow of current in a nearby graphene nanoribbon, providing cascaded logic gates that are not physically connected.

Because the communication between each of the graphene nanoribbons takes place via an electromagnetic wave, instead of the physical movement of electrons, Friedman expects that communication will be much faster, with the potential for terahertz clock speeds. In addition, these carbon materials can be made smaller than silicon-based transistors, which are nearing their size limit due to silicon's limited material properties.

"This was a great interdisciplinary collaborative team effort," Friedman said, "combining my circuit proposal with physics analysis by Jean-Pierre Leburton and Anuj Girdhar at the University of Illinois at Urbana-Champaign; technology guidance from Ryan Gelfand at the University of Central Florida; and systems insight from Alan Sahakian, Allen Taflove, Bruce Wessels, Hooman Mohseni and Gokhan Memik at Northwestern."

While the concept is still on the drawing board, Friedman said work toward a prototype of the all-carbon, cascaded spintronic computing system will continue in the interdisciplinary NanoSpinCompute research laboratory, which he directs at UT Dallas.
-end-
The research was supported by Girdhar's Beckman Graduate Fellowship.

University of Texas at Dallas

Related Magnetic Field Articles:

Scholes finds novel magnetic field effect in diamagnetic molecules
The Princeton University Department of Chemistry publishes research this week proving that an applied magnetic field will interact with the electronic structure of weakly magnetic, or diamagnetic, molecules to induce a magnetic-field effect that, to their knowledge, has never before been documented.
Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.
New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.
Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.
Adhesive which debonds in magnetic field could reduce landfill waste
Researchers at the University of Sussex have developed a glue which can unstick when placed in a magnetic field, meaning products otherwise destined for landfill, could now be dismantled and recycled at the end of their life.
Earth's last magnetic field reversal took far longer than once thought
Every several hundred thousand years or so, Earth's magnetic field dramatically shifts and reverses its polarity.
A new rare metals alloy can change shape in the magnetic field
Scientists developed multifunctional metal alloys that emit and absorb heat at the same time and change their size and volume under the influence of a magnetic field.
Physicists studied the influence of magnetic field on thin film structures
A team of scientists from Immanuel Kant Baltic Federal University together with their colleagues from Russia, Japan, and Australia studied the influence of inhomogeneity of magnetic field applied during the fabrication process of thin-film structures made from nickel-iron and iridium-manganese alloys, on their properties.
'Magnetic topological insulator' makes its own magnetic field
A team of U.S. and Korean physicists has found the first evidence of a two-dimensional material that can become a magnetic topological insulator even when it is not placed in a magnetic field.
Scientists develop a new way to remotely measure Earth's magnetic field
By zapping a layer of meteor residue in the atmosphere with ground-based lasers, scientists in the US, Canada and Europe get a new view of Earth's magnetic field.
More Magnetic Field News and Magnetic Field Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Nina
Producer Tracie Hunte stumbled into a duet between Nina Simone and the sounds of protest outside her apartment. Then she discovered a performance by Nina on April 7, 1968 - three days after the assassination of Dr. Martin Luther King Jr. Tracie talks about what Nina's music, born during another time when our country was facing questions that seemed to have no answer, meant then and why it still resonates today.  Listen to Nina's brother, Samuel Waymon, talk about that April 7th concert here.