Nav: Home

Newly discovered DNA sequences can protect chromosomes in rotifers

June 05, 2017

WOODS HOLE, Mass. -- Rotifers are tough, microscopic organisms highly resistant to radiation and repeated cycles of dehydration and rehydration. Now Irina Arkhipova, Irina Yushenova, and Fernando Rodriguez of the Marine Biological Laboratory (MBL) have discovered another protective mechanism of this hardy organism: the Terminons. Their findings, which can have implications for research on aging and genome evolution, are published this week in Molecular Biology and Evolution.

Terminons are a type of retrotransposon, DNA sequences that can copy themselves from RNA and relocate within the genome. While most transposons insert between DNA sequences, Terminons are unusual in that they attach at the end of chromosomes. Arkhipova first came across transposable elements that insert at chromosome ends in 2007 but only now has the size of these transposons been determined.

Chromosomes in eukaryotic cells (which make up all multicellular organisms) are capped with DNA sequences called telomeres, which protect the ends from degradation. By attaching to telomeres, Terminons provide even more buffer against chromosome degradation, which has been associated with aging. The discovery of Terminons could have substantial impact for research on the mechanisms of aging.

The Terminon is a giant transposon, approximately six times the size of the typical retrotransposon. Terminons reach this giant size because they seem to pick up additional genes, either from viral or cellular origins, Arkhipova says. While Terminons may be involved in capturing foreign genes -- a highly unusual property of bdelloid rotifers discovered in Arkhipova's lab -- it is unclear how this happens. Depending on what genes they acquire, some retrotransposons have evolved into viruses. So could Terminons evolve into viruses?

"That would be a very interesting question we hope to address, but these would be totally new types of viruses that haven't been described before," Arkhipova says.

Absent from all other life forms, Terminons are found in only the bdelloid rotifers. Members of this rotifer class span tens of millions of years of evolutionary history, suggesting this protective mechanism for their chromosomes is ancient. With so many undiscovered organisms occupying every niche of our globe, it is possible there are other unknown types of transposable elements that have potential for tremendous impacts on their hosts.

Several MBL scientists are actively developing the rotifer as a model system to study transposable elements in the genome, the mechanisms of aging, DNA repair strategies, and evolution without sexual reproduction.
-end-
Citation:

Arkhipova, I., Yushenova, I.A., and Rodriguez, F. (2017) Giant reverse transcriptase-encoding transposable elements at telomeres. Mol. Biol. Evol. DOI: 10.1093/molbev/msx159

The Marine Biological Laboratory (MBL) is dedicated to scientific discovery - exploring fundamental biology, understanding marine biodiversity and the environment, and informing the human condition through research and education. Founded in Woods Hole, Massachusetts in 1888, the MBL is a private, nonprofit institution and an affiliate of the University of Chicago.

Marine Biological Laboratory

Related Evolution Articles:

Prebiotic evolution: Hairpins help each other out
The evolution of cells and organisms is thought to have been preceded by a phase in which informational molecules like DNA could be replicated selectively.
How to be a winner in the game of evolution
A new study by University of Arizona biologists helps explain why different groups of animals differ dramatically in their number of species, and how this is related to differences in their body forms and ways of life.
The galloping evolution in seahorses
A genome project, comprising six evolutionary biologists from Professor Axel Meyer's research team from Konstanz and researchers from China and Singapore, sequenced and analyzed the genome of the tiger tail seahorse.
Fast evolution affects everyone, everywhere
Rapid evolution of other species happens all around us all the time -- and many of the most extreme examples are associated with human influences.
Landscape evolution and hazards
Landscapes are formed by a combination of uplift and erosion.
New insight into enzyme evolution
How enzymes -- the biological proteins that act as catalysts and help complex reactions occur -- are 'tuned' to work at a particular temperature is described in new research from groups in New Zealand and the UK, including the University of Bristol.
The evolution of Dark-fly
On Nov. 11, 1954, Syuiti Mori turned out the lights on a small group of fruit flies.
A look into the evolution of the eye
A team of researchers, among them a zoologist from the University of Cologne, has succeeded in reconstructing a 160 million year old compound eye of a fossil crustacean found in southeastern France visible.
Is evolution more intelligent than we thought?
Evolution may be more intelligent than we thought, according to a University of Southampton professor.
The evolution of antievolution policies
Organized opposition to the teaching of evolution in public schoolsin the United States began in the 1920s, leading to the famous Scopes Monkey trial.

Related Evolution Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...