Nav: Home

Decomposing leaves are surprising source of greenhouse gases

June 05, 2017

Scientists have pinpointed a new source of nitrous oxide, a greenhouse gas that's more potent than carbon dioxide. The culprit?

Tiny bits of decomposing leaves in soil.

The new discovery, led by Michigan State University (MSU) researchers and funded by the National Science Foundation (NSF), is featured in the current issue of the journal Nature Geoscience.

"This study looked at the geometry of pores in soils as a key variable that affects how nitrogen moves through those soils," said Enriqueta Barrera, program director in NSF's Division of Earth Sciences, which funded the research. "Knowing this information will lead to new ways of reducing the emission of nitrous oxide from agricultural soils."

The finding could help refine nitrous oxide emission predictions and guide future agriculture and soil management practices.

"Most nitrous oxide is produced in teaspoon-sized volumes of soil, and these so-called hotspots can emit a lot of nitrous oxide quickly," said Sasha Kravchenko, an MSU plant, soil and microbial scientist and lead author of the study. "But the reason for these hotspots has mystified soil microbiologists since they were discovered several decades ago."

Part of the vexation was due, in part, to scientists looking at larger spatial scales. It's difficult to study and label an entire field as a source of greenhouse gas emissions when the source is grams of soil harboring decomposing leaves.

Changing the view from binoculars to microscopes will help improve nitrous oxide emission predictions, which traditionally are about 50 percent accurate, at best.

Nitrous oxide's climate change potential is 300 times greater than carbon dioxide, and emissions are largely driven by agricultural practices.

To unlock the secrets of nitrous oxide hotspots, Kravchenko and her team took soil samples at NSF's Kellogg Biological Station Long-term Ecological Research (LTER) site. The site is one of 28 NSF LTER sites that span ecosystems from grasslands to deserts, coral reefs to the open sea.

In partnership with scientists from the University of Chicago at Argonne National Laboratory, Kravchenko examined the soil samples at Argonne's synchrotron scanning facility, a more powerful version of a medical CT scanner.

The scanner penetrated the soil and allowed the team to accurately characterize the environments where nitrous oxide is produced and emitted.

"We found that hotspot emissions happen only when large soil pores are present," Kravchenko said. "Leaf particles in soil act as tiny sponges, soaking up water from large pores to create a micro-habitat perfect for the bacteria that produce nitrous oxide."

Areas with smaller pores produce less nitrous oxide.

Small pores, such as those in clay soils, hold water more tightly so leaf particles can't soak it up. Without additional moisture, the bacteria can't produce as much nitrous oxide. Small pores also make it harder for the gas produced to leave the soil before being consumed by other bacteria.

Next up, the researchers will study which plant leaves contribute to higher nitrous oxide emissions. Plants with more nitrogen in their leaves, such as soybeans, will likely give off more nitrous oxide as their leaves decompose. The scientists will also look at leaf and root characteristics to see how they influence emissions.
-end-
Additional MSU scientists who were part of the study include: Ehsan Toosi, Andrey Guber, Nathaniel Ostrom and Phil Robertson. Researchers from Khyber Pakhtunkhwa Agricultural University in Peshawar, Pakistan, and the Argonne National Lab also contributed to this paper.

National Science Foundation

Related Greenhouse Gas Articles:

Old carbon reservoirs unlikely to cause massive greenhouse gas release
As global temperatures rise, permafrost and methane hydrates -- large reservoirs of ancient carbon -- have the potential to break down, releasing enormous quantities of the potent greenhouse gas methane.
Mediterranean rainfall immediately affected by greenhouse gas changes
Mediterranean-type climates face immediate drops in rainfall when greenhouse gases rise, but this could be interrupted quickly if emissions are cut.
Seeking better guidelines for inventorying greenhouse gas emissions
Governments around the world are striving to hit reduction targets using Intergovernmental Panel on Climate Change (IPCC) guidelines to limit global warming.
Nitrous oxide, a greenhouse gas, is on the rise
A new study from an international group of scientists finds we are releasing more of the greenhouse gas nitrous oxide into the atmosphere than previously thought.
Atmospheric pressure impacts greenhouse gas emissions from leaky oil and gas wells
Fluctuations in atmospheric pressure can heavily influence how much natural gas leaks from wells below the ground surface at oil and gas sites, according to new University of British Columbia research.
Natural-gas leaks are important source of greenhouse gas emissions in Los Angeles
Liyin He, a Caltech graduate student, finds that methane in L.A.'s air correlates with the seasonal use of gas for heating homes and businesses
From greenhouse gas to fuel
University of Delaware scientists are part of an international team of researchers that has revealed a new approach to convert carbon dioxide gas into valuable chemicals and fuels.
UBC researchers explore an often ignored source of greenhouse gas
In a new study from UBC's Okanagan campus, researchers have discovered a surprising new source of carbon dioxide (CO2) emissions -- bicarbonates hidden in the lake water used to irrigate local orchards.
Corncob ethanol may help cut China's greenhouse gas emissions
A new Biofuels, Bioproducts and Biorefining study has found that using ethanol from corncobs for energy production may help reduce greenhouse gas emissions in China, if used instead of starch-based ethanol.
Bacteria eats greenhouse gas with a side of protein
With the ability to leech heavy metals from the environment and digest a potent greenhouse gas, methanotrophic bacteria pull double duty when it comes to cleaning up the environment.
More Greenhouse Gas News and Greenhouse Gas Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.