Nav: Home

What caused the most toxic algal bloom ever observed in Monterey Bay?

June 05, 2017

MOSS LANDING, CA -- In late spring 2015, the West Coast of North America experienced one of the most toxic algal blooms on record. The bloom affected wildlife, including anchovies, sea birds, and sea lions, and led to the closure of commercial fisheries from California to Washington. Scientists quickly learned that the bloom consisted of diatoms in the genus Pseudo-nitzschia, but they couldn't tell why these algae had become so toxic. A new paper in Geophysical Research Letters shows that, at least in Monterey Bay, the diatoms in this bloom became particularly toxic because of an unusually low ratio of silicate to nitrate in the waters of the bay.

Some species of Pseudo-nitzschia diatoms produce a potent neurotoxin called domoic acid, which can cause seizures and death in mammals. Previous blooms of these diatoms in 1991 and 1998 sickened and killed numerous seabirds and sea lions in Monterey Bay. However researchers are still trying to figure out why some Pseudo-nitzschia blooms are more toxic than others.

The 2015 Pseudo-nitzschia bloom coincided with a large-scale biology experiment in Monterey Bay called Ecology and Oceanography of Harmful Algal Blooms (ECOHAB). During this experiment, scientists from MBARI, the University of California at Santa Cruz, Moss Landing Marine Laboratories, and the National Oceanic and Atmospheric Administration measured oceanographic conditions as well as concentrations of Pseudo-nitzschia and domoic acid throughout Monterey Bay.

During the ECOHAB experiment, the research team sent underwater robots cruising around the bay. Sensors onboard the robotic vehicles revealed extremely high concentrations of toxic Pseudo-nitzschia diatoms lurking below the surface. The researchers also anchored two robotic molecular biology instruments (Environmental Sample Processors, or ESPs) near the north and south ends of the bay. The ESPs confirmed that the bloom consisted mostly of one particularly toxic species, Pseudo-nitzschia australis, and that these diatoms contained unusually high concentrations of domoic acid. The result was a deadly combination: dense populations of particularly toxic diatoms.

John Ryan, an MBARI oceanographer and lead author of the recent paper, wanted to know what factors affected the growth and toxicity of the 2015 bloom in Monterey Bay. Working with the ECOHAB team, he examined the physical and chemical conditions leading up to the 2015 bloom, and compared these data with conditions measured during previous years.

Ryan first considered the possibility that unusually warm ocean waters might have played a role in the bloom. From 2014 to 2016 the surface water in the Northeastern Pacific was much warmer than usual-a phenomenon nicknamed the "warm blob." But after comparing 2015 conditions with historical data, Ryan found that the waters in Monterey Bay were not unusually warm during the bloom. Warm water did affect the bay before and after the bloom, but during the spring of 2015 the waters were cooled by local upwelling.

Upwelling occurs when strong northwest winds move surface water away from shore, allowing cold, deep water, rich in nitrate, silicate, and other nutrients, to rise to the sea surface. Because these nutrients act like fertilizer for marine algae, upwelling events often lead to diatom blooms. Upwelling is common around Monterey Bay during spring.

During the spring of 2015, a very strong upwelling event in late March initiated the Pseudo-nitzschia bloom. This was followed by several milder events that rejuvenated diatom populations while allowing the drifting algae to persist and accumulate within the bay. These physical factors helped explain the dense concentrations of algae within the bay, but they didn't explain why these algae contained so much domoic acid.

Next Ryan and his colleagues looked at the chemistry of the bay, focusing on concentrations of two key nutrients--nitrate and silicate. Diatoms need nitrate for a wide variety of biochemical processes, including the production of domoic acid. They need silicate to grow and reproduce.

MBARI researchers have been measuring nitrate and silicate in Monterey Bay almost every month for the past 24 years. Examining this unique data set, Ryan found that, under normal spring conditions in Monterey Bay, silicate is more abundant than nitrate. However, in the months leading up to and during the 2015 spring bloom, there was more nitrate than silicate in bay waters. In fact, at the peak of the Pseudo-nitzschia bloom in May, there was essentially no silicate left in the water (presumably the diatoms had consumed it all), but some nitrate still remained.

Turning to the scientific literature, the researchers found lab and field studies showing that Pseudo-nitzschia diatoms can become more toxic if they run out of silicate but still have nitrate available. Under these conditions, the diatoms can't reproduce quickly, but they can still produce domoic acid. Diatoms reproduce by splitting in half, so any domoic acid in a parent cell is divided between the two daughter cells. But when low ratios of silicate to nitrate result in less frequent reproduction, domoic acid can become concentrated within individual diatoms.

The researchers concluded that the extraordinarily high populations of Pseudo-nitzschia in 2015 were related to the strength and timing of upwelling events. But the extremely high concentrations of domoic acid were probably caused by unusual ocean chemistry -- specifically a low ratio of silicate to nitrate in bay waters.

Because the unusual chemistry of the bay waters coincided with the large-scale warming of the Northeast Pacific, the researchers suspect there may be a link between the two phenomena. However they do not have enough data about ocean chemistry outside of Monterey Bay to flesh out this connection.

Reflecting on the recent paper, Ryan said, "One of the takeaways of this research is that we need good chemical as well as physical data to understand and predict harmful algal blooms. In this case, the nutrient silicate appeared to be the key factor. However, other nutrients, such as urea (in wastewater), can also influence the toxicity of these algae. We look forward to applying our new technologies to monitor biological, physical, and chemical conditions in the coastal ocean. This will help us understand and eventually predict when and where harmful algal blooms are likely to occur."
Original journal article:

Ryan, J.P., R.M. Kudela, J.M. Birch, M. Blum, H.A. Bowers, F.P. Chavez, G.J. Doucette, K. Hayashi, R. Marin III, C.M. Mikulski, J.T. Pennington, C.A. Scholin, G.J. Smith, A. Woods, and Y. Zhang (2017). Causality of an extreme harmful algal bloom in Monterrey Bay, California during the 2014-2016 northeast Pacific warm anomaly. Geophysical Research Letters 05 June 2017. DOI: 10.1002/2017GL072637

Link to article:

Online news release with images:

Monterey Bay Aquarium Research Institute

Related Algae Articles:

Algae and bacteria team up to increase hydrogen production
A University of Cordoba research group combined algae and bacteria in order to produce biohydrogen, fuel of the future
Algae as a resource: Chemical tricks from the sea
The chemical process by which bacteria break down algae into an energy source for the marine food chain, has been unknown - until now.
Left out to dry: A more efficient way to harvest algae biomass
Researchers at the University of Tsukuba develop a new system for evaporating the water from algae biomass with reusable nanoporous graphene, which can lead to cheaper, more environmentally friendly biofuels and fine chemicals.
Algae could prevent limb amputation
A new algae-based treatment could reduce the need for amputation in people with critical limb ischemia, according to new research funded by the British Heart Foundation, published today in the journal npj Regenerative Medicine.
Turning algae into fuel
A team of University of Utah chemical engineers have developed a new kind of jet mixer for creating biomass from algae that extracts the lipids from the watery plants with much less energy than the older extraction method.
The algae's third eye
Scientists at the Universities of W├╝rzburg and Bielefeld in Germany have discovered an unusual new light sensor in green algae.
Could algae that are 'poor-providers' help corals come back after bleaching?
How much of a reef's ability to withstand stressful conditions is influenced by the type of symbiotic algae that the corals hosts?
How some algae may survive climate change
Green algae that evolved to tolerate hostile and fluctuating conditions in salt marshes and inland salt flats are expected to survive climate change, thanks to hardy genes they stole from bacteria, according to a Rutgers-led study.
Feeding plants to this algae could fuel your car
The research shows that a freshwater production strain of microalgae, Auxenochlorella protothecoides, is capable of directly degrading and utilizing non-food plant substrates, such as switchgrass, for improved cell growth and lipid productivity, useful for boosting the algae's potential value as a biofuel.
Algae have land genes
The genome of the algae species Chara braunii has been decoded.
More Algae News and Algae Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.