Nav: Home

Police officers speak less respectfully to black residents than to white residents

June 05, 2017

The first systematic analysis of police body camera footage shows that officers consistently use less respectful language with black community members than with white community members, according to new Stanford research.

Although they are subtle, these widespread racial disparities in officers' language use may erode police-community relations, said the researchers who conducted the study, published June 5 in Proceedings of the National Academy of Sciences.

"Our findings highlight that, on the whole, police interactions with black community members are more fraught than their interactions with white community members," explained Jennifer Eberhardt, co-author of the study and professor of psychology at Stanford.

The racial disparities in respectful speech remained even after the researchers controlled for the race of the officer, the severity of the infraction, and the location and outcome of the stop.

To analyze the body camera footage, a multidisciplinary team from Stanford's psychology, linguistics and computer science departments first developed a new artificial intelligence technique for measuring levels of respect in officers' language. They then applied this technique to the transcripts from 981 traffic stops the Oakland Police Department (OPD) made in a single month.

The researchers' novel technique demonstrated that white residents were 57 percent more likely than black residents to hear a police officer say the most respectful utterances, such as apologies and expressions of gratitude like "thank you." Meanwhile, black community members were 61 percent more likely than white residents to hear an officer say the least respectful utterances, such as informal titles like "dude" and "bro" and commands like "hands on the wheel."

"To be clear: There was no swearing," said Dan Jurafsky, a study co-author and Stanford professor of linguistics and of computer science. "These were well-behaved officers. But the many small differences in how they spoke with community members added up to pervasive racial disparities."

"The fact that we now have the technology and methods to show these patterns is a huge advance for behavioral science, computer science and the policing industry," said Rob Voigt, a Stanford linguistics doctoral student and lead author of the study. "Police departments can use these tools not only to diagnose problems in police-community relations but also to develop solutions."

Video footage as data, not evidence

The study is not the first time Eberhardt has collaborated with the OPD to study possible racial disparities in policing. In 2014, the City of Oakland contracted with Eberhardt and her team to assist the Oakland Police Department in complying with a federal order to collect and analyze data from traffic and pedestrian stops by race.

OPD, like many police departments nationwide, has been using body-worn cameras to monitor police-community interactions. But drawing accurate conclusions from hundreds of hours of footage is challenging, Eberhardt said. Just "cherry-picking" negative or positive episodes, for example, can lead to inaccurate impressions of police-community relations overall, she said.

"The police are already wary of footage being used against them," Eberhardt said. "At the same time, many departments want their actions to be transparent to the public."

To satisfy demands for both privacy and transparency, the researchers needed a way to approach the footage as data showing general patterns, rather than as evidence revealing wrongdoing in any single stop.

Yet "researchers can't just sit and watch every single stop," Eberhardt explained. "It would take too long. Besides, their own biases could affect their judgments of the interactions."

New methodology for analyzing footage

To explore police-community interactions in the aggregate, Eberhardt concentrated on the language extracted from the audio of the footage as the technologies for analyzing videos are limited.

She sought out Jurafsky, an expert in using computers as a tool for understanding human language. Because the policing industry considers "offering respect" an important way to achieve harmonious police-community relations, Eberhardt and Jurafsky decided to study the level of respect in officers' language. In particular, they set out to explore whether officers speak more or less respectfully to people of different races.

Together, Eberhardt, Jurafsky and seven other colleagues examined transcripts from 183 hours of body camera footage from 981 stops, which 245 different OPD officers conducted in April 2014.

In the first phase of the study, human participants examined a subsample of the transcribed conversations between officers and community members -- without knowing the race or gender of either -- and rated how respectful, polite, friendly, formal and impartial the officers' language was.

In the second phase, the researchers used these ratings to develop a computational linguistic model of how speakers show respect, including apologizing, softening commands and expressing concern for listeners' well-being. They then created software that automatically identified these words, phrases and linguistic patterns in the transcripts of the officers' language.

In the third phase, the researchers used this software to analyze the remaining transcripts -- a total of 36,000 officer utterances with 483,966 words. Because the team had so much data, they could statistically account for the race of the officer, the severity of the offense and other factors that could affect officers' language.

"Understanding and improving the interactions between the police and the communities they serve is incredibly important, but the interactions can be difficult to study," Jurafsky said. "Computational linguistics offers a way to aggregate across many speakers and many interactions to detect the way that everyday language can reflect our attitudes, thoughts and emotions - which are sometimes outside of our own awareness."

"Our findings are not proof of bias or wrongdoing on the part of individual officers," Eberhardt cautioned. "Many factors could drive racial disparities in respectful speech."

Footage for improvement

The research team is currently extending their work to analyze the language used by community members during the traffic stops and to study other linguistic features captured by the body cameras, including tone of voice. They also plan to explore the interplay of officers' and community members' speech as it unfolds over time.

"There is so much you can do with this footage," Eberhardt said. "We are very excited about the possibilities."

Eberhardt praised the City of Oakland and OPD for being open to having their data examined, and said she hopes that other departments across the country will invite similar collaborations.

"I'm hopeful that, with the development of computational tools like ours, more law enforcement agencies will approach their body camera footage as data for understanding, rather than as evidence for blaming or exonerating," Eberhardt said. "Together, researchers and police departments can use these tools to improve police-community relations."
-end-
The study's other co-authors were Nicholas Camp, Rebecca Hetey and Camilla Griffiths of the Department of Psychology; and Vinodkumar Prabhakaran, William Hamilton and David Jurgens of the Department of Computer Science.

Stanford University

Related Language Articles:

Human language most likely evolved gradually
One of the most controversial hypotheses for the origin of human language faculty is the evolutionary conjecture that language arose instantaneously in humans through a single gene mutation.
'She' goes missing from presidential language
MIT researchers have found that although a significant percentage of the American public believed the winner of the November 2016 presidential election would be a woman, people rarely used the pronoun 'she' when referring to the next president before the election.
How does language emerge?
How did the almost 6000 languages of the world come into being?
New research quantifies how much speakers' first language affects learning a new language
Linguistic research suggests that accents are strongly shaped by the speaker's first language they learned growing up.
Why the language-ready brain is so complex
In a review article published in Science, Peter Hagoort, professor of Cognitive Neuroscience at Radboud University and director of the Max Planck Institute for Psycholinguistics, argues for a new model of language, involving the interaction of multiple brain networks.
Do as i say: Translating language into movement
Researchers at Carnegie Mellon University have developed a computer model that can translate text describing physical movements directly into simple computer-generated animations, a first step toward someday generating movies directly from scripts.
Learning language
When it comes to learning a language, the left side of the brain has traditionally been considered the hub of language processing.
Learning a second alphabet for a first language
A part of the brain that maps letters to sounds can acquire a second, visually distinct alphabet for the same language, according to a study of English speakers published in eNeuro.
Sign language reveals the hidden logical structure, and limitations, of spoken language
Sign languages can help reveal hidden aspects of the logical structure of spoken language, but they also highlight its limitations because speech lacks the rich iconic resources that sign language uses on top of its sophisticated grammar.
Lying in a foreign language is easier
It is not easy to tell when someone is lying.
More Language News and Language Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.