Nav: Home

Domes of frozen methane may be warning signs for new blow-outs

June 05, 2017

The results are published in PNAS.

"Every year we go back to the dome area with our research vessel, and every year I am anxious to see if one of these domes has become a crater," says lead author of the study Pavel Serov, PhD candidate at CAGE at UiT The Arctic University of Norway.

These domes are the present-day analogue to what scientists think preceded the craters found in the near-by area, which were recently reported in Science. The craters were formed as the ice sheet retreated from the Barents Sea during the deglaciation some 12.000 years ago.

At the time, 2km thick ice-cover loaded what now is the ocean floor with heavy weight. Under the ice sheet the methane became stored as hydrate, a solid form of frozen methane.

"We believe that one step before the craters are created, you get these domes. They are mounds of hydrates, technically we call them gas hydrate pingos. They are hydrate and methane saturated relics of the last ice-age. They haven't collapsed yet. And the reason is a matter of narrow margins" states Serov.

20 meters from the brink of collapse

The dome area is situated on the Arctic Ocean floor just north of the craters. It is deeper, but not by much. The domes are found some 20 meters deeper. Essentially the height of the Buckingham Palace keeps these methane domes from blowing out the gas and becoming craters.

"Hydrates are stable in low temperatures and under high pressure. So, the pressure of 390 meters of water above is presently keeping them stabilised. But the methane is bubbling from these domes. This is actually one of the most active methane seep sites that we have mapped in the Arctic Ocean. Some of these methane flares extend almost to the sea surface" says Serov.

He is reluctant to speculate as to how much methane may be released into the ocean should the domes collapse entirely and abruptly. It is not possible to predict when it may happen either. But every sediment core collected in the area is full of hydrates.

This is actually the first time that domes such as these have been found outside of the permafrost areas.

More stable than in permafrost

However unstable these domes on the Arctic Ocean floor may be, they are still more stable than the pingos found in sub- sea permafrost in Canadian and Russian Arctic.

"The gas hydrate pingos in permafrost are formed because of the low temperatures. But the water-depth that supports gas hydrates in sub-sea permafrost is only 40 to 50 meters. There is no significant pressure there to keep them in check. Sub-seabed permafrost is deteriorating constantly and quickly" notes Serov.

Even though they are more stable than the permafrost pingos, the Barents Sea domes are on the limit of their existence.

"A relatively small change in the water temperature can destabilise these hydrates fairly quickly. We were actually very lucky to observe them at this point. And we will probably be able to observe significant changes to these domes during our lifetime."
-end-


CAGE - Center for Arctic Gas Hydrate, Climate and Environment

Related Methane Articles:

Microbial fuel cell converts methane to electricity
Transporting methane from gas wellheads to market provides multiple opportunities for this greenhouse gas to leak into the atmosphere.
Methane seeps in the Canadian high Arctic
Cretaceous climate warming led to a significant methane release from the seafloor, indicating potential for similar destabilization of gas hydrates under modern global warming.
Methane emissions from trees
A new study from the University of Delaware is one of the first in the world to show that tree trunks in upland forests actually emit methane rather than store it, representing a new, previously unaccounted source of this powerful greenhouse gas.
Oil production releases more methane than previously thought
Emissions of methane and ethane from oil production have been substantially higher than previously estimated, particularly before 2005.
Bursts of methane may have warmed early Mars
The presence of water on ancient Mars is a paradox.
New method for quantifying methane emissions from manure management
The EU Commision requires Denmark to reduce drastically emissions of greenhouse gases from agriculture.
New 3-D printed polymer can convert methane to methanol
Lawrence Livermore National Laboratory scientists have combined biology and 3-D printing to create the first reactor that can continuously produce methanol from methane at room temperature and pressure.
Arctic Ocean methane does not reach the atmosphere
250 methane flares release the climate gas methane from the seabed and into the Arctic Ocean.
Long-sought methane production mechanism identified
Researchers have identified the mechanism by which bacteria create methane, a potent greenhouse gas.
Retreat of the ice followed by millennia of methane release
Methane was seeping from the seafloor for thousands of years following the retreat of the Barents Sea ice sheet, shows a groundbreaking new study in Nature Communications.

Related Methane Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...