Nav: Home

Researchers find micro-gene that protects the brain from developing epilepsy

June 05, 2017

On December 16, 1997, hundreds of Japanese children were brought to hospital suffering from epilepsy-like seizures. They all had one thing in common: they had been watching an episode of the Pokemon TV show when their symptoms began. Doctors determined that their symptoms were triggered by five seconds of intensely bright flashing lights on the popular TV program. But why did the lights affect a few hundred children while thousands of other viewers were unharmed?

In new research published in the Proceedings of the National Academy of Sciences, a team of researchers headed by Prof. Hermona Soreq at the Hebrew University of Jerusalem sought to answer this question. Drawing on her previous research, Prof. Soreq, the Charlotte Slesinger Professor of Molecular Neuroscience at the Edmond and Lily Safra Center for Brain Sciences and the Alexander Silberman Institute of Life Sciences, hypothesized that healthy brains may be protected from epileptic seizures by rapidly produced molecules called short RNAs, or microRNAs (miRs). MicroRNAs are a recently-discovered class of non-coding RNAs that can prevent genes from expressing particular proteins.

To test this idea, Soreq and her colleagues at the Hebrew University developed a transgenic mouse producing unusually high amounts of one micro-RNA called miR-211, which the researchers predicted was involved. The levels of this molecule could be gradually lowered by administering the antibiotic Doxycycline, enabling tests of its potency to avoid epilepsy.

Working with colleagues at Ben-Gurion University of the Negev in Israel and Dalhousie University in Canada, they suppressed excess miR-211 production in the engineered mice to the levels found in normal brains. Within four days, this caused the mice to display electrically-recorded epilepsy and hypersensitivity to epilepsy-inducing compounds. "Dynamic changes in the amount of miR-211 in the forebrains of these mice shifted the threshold for spontaneous and pharmacologically induced seizures, alongside changes in the cholinergic pathway genes," said Prof. Soreq.

These findings indicated that mir-211 plays a beneficial role in protecting the brain from epileptic seizures in the engineered mice.

Noting that miR-211 is known to be elevated in the brains of Alzheimer's patients who are at high risk for epilepsy, the researchers suspect that in human brains as well, elevated miR-211 may act as a protective mechanism to reduce the risk of epileptic seizures.

"It is important to discover how only some people's brains present a susceptibility to seizures, while others do not, even when subjected to these same stressors," said Prof. Soreq. In searching for the physiological mechanisms that allow some people's brains to avoid epilepsy, we found that increased levels of micro-RNA 211 could have a protective effect."

According to the researchers, recognizing the importance of miR-211 could open new avenues for diagnosing and interfering with epilepsy. By understanding how miR-211 affects seizure thresholds, scientists could potentially develop therapeutics that lead to greater miR-211-production.
-end-
Participating researchers are affiliated with the following institutions: The Alexander Silberman Institute of Life Sciences and The Edmond and Lily Safra Center for Brain Sciences at The Hebrew University of Jerusalem, Israel; Department of Physiology and Cell Biology and Department of Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev; and Department of Medical Neuroscience, Dalhousie University, Canada. The authors thank the Netherlands Brain Bank for human-derived samples.

The Hebrew University of Jerusalem is Israel's leading academic and research institution, producing one-third of all civilian research in Israel. For more information, visit http://new.huji.ac.il/en.

The Hebrew University of Jerusalem

Related Epilepsy Articles:

Antibodies in the brain trigger epilepsy
Certain forms of epilepsy are accompanied by inflammation of important brain regions.
Breaching the brain's defense causes epilepsy
Epileptic seizures can happen to anyone. But how do they occur and what initiates such a rapid response?
Using connectomics to understand epilepsy
Abnormalities in structural brain networks and how brain regions communicate may underlie a variety of disorders, including epilepsy, which is one focus of a two-part Special Issue on the Brain Connectome in Brain Connectivity, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers.
Epilepsy: Triangular relationship in the brain
When an epileptic seizure occurs in the brain, the nerve cells lose their usual pattern and fire in a very fast rhythm.
How concussions may lead to epilepsy
Researchers have identified a cellular response to repeated concussions that may contribute to seizures in mice like those observed following traumatic brain injury in humans.
Understanding epilepsy in pediatric tumors
A KAIST research team led by Professor Jeong Ho Lee of the Graduate School of Medical Science and Engineering has recently identified a neuronal BRAF somatic mutation that causes intrinsic epileptogenicity in pediatric brain tumors.
Can medical marijuana help treat intractable epilepsy?
A new British Journal of Clinical Pharmacology review examines the potential of medicinal cannabis -- or medical marijuana -- for helping patients with intractable epilepsy, in which seizures fail to come under control with standard anticonvulsant treatment.
Fertility rates no different for women with epilepsy
'Myth-busting' study among women with no history of infertility finds that those with epilepsy are just as likely to become pregnant as those without.
Do women with epilepsy have similar likelihood of pregnancy?
Women with epilepsy without a history of infertility or related disorders who wanted to become pregnant were about as likely as their peers without epilepsy to become pregnant.
Hope for new treatment of severe epilepsy
Researchers at Lund University in Sweden believe they have found a method that in the future could help people suffering from epilepsy so severe that all current treatment is ineffective.
More Epilepsy News and Epilepsy Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.