Nav: Home

ASU-led scientists discover why rocks flow slowly in Earth's middle mantle

June 05, 2017

For decades, researchers have studied the interior of the Earth using seismic waves from earthquakes. Now a recent study, led by Arizona State University's School of Earth and Space Exploration Associate Professor Dan Shim, has re-created in the laboratory the conditions found deep in the Earth, and used this to discover an important property of the dominant mineral in Earth's mantle, a region lying far below our feet.

Shim and his research team combined X-ray techniques in the synchrotron radiation facility at the U.S. Department of Energy's National Labs and atomic resolution electron microscopy at ASU to determine what causes unusual flow patterns in rocks that lie 600 miles and more deep within the Earth. Their results have been published in the Proceedings of the National Academy of Sciences.

Slow flow, down deep

Planet Earth is built of layers. These include the crust at the surface, the mantle and the core. Heat from the core drives a slow churning motion of the mantle's solid silicate rocks, like slow-boiling fudge on a stove burner. This conveyor-belt motion causes the crust's tectonic plates at the surface to jostle against each other, a process that has continued for at least half of Earth's 4.5 billion-year history.

Shim's team focused on a puzzling part of this cycle: Why does the churning pattern abruptly slow at depths of about 600 to 900 miles below the surface?

"Recent geophysical studies have suggested that the pattern changes because the mantle rocks flow less easily at that depth," Shim said. "But why? Does the rock composition change there? Or do rocks suddenly become more viscous at that depth and pressure? No one knows."

To investigate the question in the lab, Shim's team studied bridgmanite, an iron-containing mineral that previous work has shown is the dominant component in the mantle.

"We discovered that changes occur in bridgmanite at the pressures expected for 1,000 to 1,500 km depths," Shim said. "These changes can cause an increase in bridgmanite's viscosity -- its resistance to flow."

The team synthesized samples of bridgmanite in the laboratory and subjected them to the high-pressure conditions found at different depths in the mantle.

Mineral key to the mantle

The experiments showed the team that, above a depth of 1,000 kilometers and below a depth of 1,700 km, bridgmanite contains nearly equal amounts of oxidized and reduced forms of iron. But at pressures found between those two depths, bridgmanite undergoes chemical changes that end up significantly lowering the concentration of iron it contains.

The process starts with driving oxidized iron out of the bridgmanite. The oxidized iron then consumes the small amounts of metallic iron that are scattered through the mantle like poppy seeds in a cake. This reaction removes the metallic iron and results in making more reduced iron in the critical layer.

Where does the reduced iron go? The answer, said Shim's team, is that it goes into another mineral present in the mantle, ferropericlase, which is chemically prone to absorbing reduced iron.

"Thus the bridgmanite in the deep layer ends up with less iron," explained Shim, noting that this is the key to why this layer behaves the way it does.

"As it loses iron, bridgmanite becomes more viscous," Shim said. "This can explain the seismic observations of slowed mantle flow at that depth."
Other members of the Shim team include Brent Grocholski (Smithsonian Institution), Yu Ye (former ASU post-doctoral student now at the University of Geosciences in Wuhan, China), Ercan Alp (Argonne National Laboratory), Shenzhen Xu and Dane Morgan (University of Wisconsin), Yue Meng (Carnegie Institution of Washington) and Vitali Prakapenka (University of Chicago). About half of the high-pressure samples were analyzed using the electron microscopes at John M. Cowley Center for High Resolution Electron Microscopy at ASU.

Arizona State University

Related Iron Articles:

Blocking the iron transport could stop tuberculosis
The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply.
Observed: An exoplanet where it rains iron
Nature magazine is publishing today a surprising study about the giant, ultra-hot planet WASP-76b in which researchers from the Instituto de Astrofísica de Canarias (IAC) have taken part.
An iron-clad asteroid
Mineralogists from Jena and Japan discover a previously unknown phenomenon in soil samples from the asteroid 'Itokawa': the surface of the celestial body is covered with tiny hair-shaped iron crystals.
It's Iron, Man: ITMO scientists found a way to treat cancer with iron oxide nanoparticles
Particles previously loaded with the antitumor drug are injected in vivo and further accumulate at the tumor areas.
Iron nanorobots show their true mettle
Multifunctional iron nanowires selectively obliterate cancer cells with a triple-punch combination attack.
The brain may need iron for healthy cognitive development
Iron levels in brain tissue rise during development and are correlated with cognitive abilities, according to research in children and young adults recently published in JNeurosci.
The regulators active during iron deficiency
Iron deficiency is a critical situation for plants, which respond using specific genetic programmes.
How nitrogen-fixing bacteria sense iron
New research reveals how nitrogen-fixing bacteria sense iron - an essential but deadly micronutrient.
Getting to the root of how plants tolerate too much iron
Salk scientists have found a major genetic regulator of iron tolerance, a gene called GSNOR.
Stressed plants must have iron under control
When land plants' nutrient availability dwindles, they have to respond to this stress.
More Iron News and Iron Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at