Nav: Home

New Jupiter-like world so hot it stretches definition of 'planet'

June 05, 2017

A newly discovered Jupiter-like world is so hot that it's stretching the definition of the word "planet."

With a day-side temperature of 4,600 Kelvin (more than 7,800 degrees Fahrenheit), planet KELT-9b is hotter than most stars, and only 1,200 Kelvin (about 2,000 degrees Fahrenheit) cooler than our own sun.

In an article in this week's issue of Nature, an international research team led by astronomers at Ohio State University and Vanderbilt University describes a planet with some very unusual features. The article is titled "A giant planet undergoing extreme ultraviolet irradiation by its hot massive-star host."

Two Lehigh University astronomers -- Joshua Pepper , assistant professor of physics, and doctoral candidate Jonathan Labadie-Bartz--coauthored the study, which was also presented at the spring meeting of the American Astronomical Society.

KELT-9b is a gas giant 2.8 times more massive than Jupiter but only half as dense, because extreme radiation from its host star has caused its atmosphere to puff up like a balloon. And because it is tidally locked to its star -- as the moon is to Earth -- the day side of the planet is perpetually bombarded by stellar radiation, and as a result is so hot that molecules such as water, carbon dioxide and methane can't form there. The properties of the night side are still mysterious -- molecules may be able to form there, but probably only temporarily.

"It's a planet by any of the typical definitions based on mass, but its atmosphere is almost certainly unlike any other planet we've ever seen just because of the temperature of its day side," said Scott Gaudi, professor of astronomy at Ohio State University and a leader of the study.

KELT-9b orbits a star, dubbed KELT-9, which is more than twice as large and nearly twice as hot as our sun.

"KELT-9 radiates so much ultraviolet radiation that it may completely evaporate the planet," said Keivan Stassun, a professor of physics and astronomy at Vanderbilt who directed the study with Gaudi. "Or, if gas giant planets like KELT-9b possess solid rocky cores as some theories suggest, the planet may be boiled down to a barren rock, like Mercury."

That is, if the star doesn't grow to engulf it first. "KELT-9 will swell to become a red giant star in about a billion years," said Stassun. "The long-term prospects for life, or real estate for that matter, on KELT-9b are not looking good."

A possible UV-fueled tail

Given that its atmosphere is constantly blasted with high levels of ultraviolet radiation, the planet may even be shedding a tail of evaporated planetary material like a comet, Gaudi added.

While Gaudi and Stassun spend a lot of time developing missions designed to find habitable planets in other solar systems, the scientists said there's a good reason to study worlds that are unlivable in the extreme.

"As has been highlighted by the recent discoveries from the MEarth collaboration, the planet around Proxima Centauri, and the astonishing system discovered around TRAPPIST-1, the astronomical community is clearly focused on finding Earthlike planets around small, cooler stars like our sun," said Gaudi. "They are easy targets and there's a lot that can be learned about potentially habitable planets orbiting very low-mass stars in general.

"On the other hand, because KELT-9b's host star is bigger and hotter than the sun, it complements those efforts and provides a kind of touchstone for understanding how planetary systems form around hot, massive stars," Gaudi said.

Stassun added, "As we seek to develop a complete picture of the variety of other worlds out there, it's important to know not only how planets form and evolve, but also when and under what conditions they are destroyed."

A tiny dip in stellar brightness

How was the new planet found?

In 2014, astronomers using the KELT-North telescope at Winer Observatory in Arizona noticed a tiny drop in the star's brightness--about half of one percent-- that indicated that a planet may have passed in front of the star. The brightness dipped once every 1.5 days, which means the planet completes a "yearly" circuit around its star every 1.5 days.

Subsequent observations confirmed the signal to be due to a planet, and revealed it to be what astronomers call a "hot Jupiter"--the ideal kind of planet for the KELT telescopes to spot.

KELT is short for "Kilodegree Extremely Little Telescope." Astronomers at Ohio State, Vanderbilt and Lehigh University jointly operate two KELTs (one each in the Northern and Southern Hemispheres) in order to fill a large gap in the available technologies for finding extrasolar planets.

Other telescopes are designed to look at very faint stars in much small sections of the sky, and at very high resolution. The KELTs, in contrast, look at millions of very bright stars at once, over broad sections of sky, and at low resolution.

It's a low-cost means of planet hunting, using mostly off-the-shelf technology: while a traditional astronomical telescope costs millions of dollars to build, the hardware for a KELT telescope runs less than $75,000.

"This discovery is a testament to the discovery power of small telescopes, and the ability of citizen scientists to directly contribute to cutting-edge scientific research," said Pepper, who built the two KELT telescopes.

The astronomers hope to take a closer look at KELT-9b with other telescopes--including Spitzer, the Hubble Space Telescope (HST), and eventually the James Webb Space Telescope. Observations with HST would enable them to see if the planet really does have a cometary tail, and to determine how much longer that planet will survive its current hellish condition.
-end-
Besides Vanderbilt, Ohio State and Lehigh, American partner institutions include Fisk University, Pennsylvania State University, the Harvard-Smithsonian Center for Astrophysics, Las Cumbres Observatory Global Telescope Network, University of Notre Dame, NASA Ames Research Center, Bay Area Environmental Research Institute, Swarthmore College, IPAC, Brigham Young University, University of California-Santa Cruz, University of Wyoming, Louisiana State University, University of Louisville, Spot Observatory in Nashville, Westminster College, Kutztown University, University of Hawaii, University of Washington, Texas A&M University, Wellesley College, and the Winer Observatory in Sonoita, Arizona. International team members are from Denmark, Italy, Japan, Portugal, Switzerland, Australia, Germany and South Africa.

The study was largely funded by the National Science Foundation through an NSF CAREER Grant, NSF PAARE Grant and an NSF Graduate Research Fellowship. Additional support came from NASA via the Jet Propulsion Laboratory and the Exoplanet Exploration Program; the Harvard Future Faculty Leaders Postdoctoral Fellowship; Theodore Dunham, Jr., Grant from the Fund for Astronomical Research; and the Japan Society for the Promotion of Science.

Lehigh University

Related Ultraviolet Radiation Articles:

Skin cancer risk in athletes: The dangers of ultraviolet radiation
The dangers of ultraviolet radiation exposure, which most often comes from the sun, are well-known.
Hubble captures cosmic fireworks in ultraviolet
Hubble offers a special view of the double star system Eta Carinae's expanding gases glowing in red, white, and blue.
Stretchable interlaced-nanowire film for ultraviolet photodetectors with high response speed
Recently, one research group from the Institute of Semiconductors, Chinese Academy of Sciences, presented an interesting SnO2-CdS NW interlaced structure to fabricate stretchable UV photodetectors with high response speed in Science China Materials.
Understanding high efficiency of deep ultraviolet LEDs
Deep ultraviolet light-emitting diodes (DUV-LEDs) made from aluminium gallium nitride (AlGaN) efficiently transfer electrical energy to optical energy due to the growth of one of its bottom layers in a step-like fashion.
New method uses ultraviolet light to control fluid flow and organize particles
A new, simple, and inexpensive method that uses ultraviolet light to control particle motion and assembly within liquids could improve drug delivery, chemical sensors, and fluid pumps.
Ultraviolet disinfection 97.7 percent effective in eliminating pathogens in hospital settings
Using ultraviolet (UV) disinfection technology to reduce the risk of hospital-acquired infections eliminated up to 97.7 percent.
Atomic jet -- the first lens for extreme-ultraviolet light developed
Scientists from the Max Born Institute have developed the first refractive lens that focuses extreme ultraviolet beams.
Scientists discover biological ultraviolet protection 'timer'
Tel Aviv University Prof. Carmit Levy and her team have discovered a critical 48-hour cycle responsible for synchronizing the biological mechanisms that protect our skin from sun damage.
New way to control meandering electrons and generate extreme-ultraviolet emissions
A team at IBS the Center for Relativistic Laser Science has found a completely new way to generate extreme-ultraviolet emissions, that is light having a wavelength of 10 to 120 nanometers.
Study reveals how enzyme detects ultraviolet light damage
In a paper published this week in the journal PNAS, researchers at University of California San Diego School of Medicine, with colleagues in Spain and Finland, describe for the first time how one type of RNA polymerase gets stalled by DNA lesions caused by exposure to ultraviolet (UV) light.
More Ultraviolet Radiation News and Ultraviolet Radiation Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.