Nav: Home

Computer-aided imaging technique could reduce risk of second breast cancer surgery

June 05, 2017

According to a recent study, one in four women with breast cancer who opt for a breast-saving lumpectomy will need a second surgery - increasing both costs and the risk of complications.

Why is a second surgery so common? Currently the only way surgeons can confirm during surgery that there are no cancer cells in the "margin" - the tissue surrounding the removed tumor - is by performing a frozen section, which uses liquid nitrogen to freeze the excised tissues before the tissue is sectioned into thin slices and stained for pathologists to examine in the lab. This procedure is often performed during surgery to evaluate the tumor margin. Surgeons remove more tissue if a positive margin is identified. The excised tissue is then sent for a thorough histopathological evaluation. However, the frozen section can miss the tumor margin on the tissue surface - and often does - and the histopathology results from the lab are not available for several days.

What if surgeons had a more accurate way to find out - in the operating room, in real-time - whether the margins were free of cancer cells?

Chao Zhou, assistant professor of electrical engineering at Lehigh University and his Lehigh collaborator Sharon Xiaolei Huang, associate professor of computer science and engineering, are working to make that vision a reality. They have created a computer-aided diagnostic technique that marries cutting-edge imaging technology with the latest advances in artificial intelligence to detect in real-time the difference between cancerous and benign cells.

Senior collaborators on the project include Professor James G. Fujimoto of Massachusetts Institute of Technology; Dr. James L. Connolly of Harvard Medical School; and, Drs. Xianxu Zeng and Zhan Zhang from the Third Affiliated Hospital of Zhengzhou University in Henan, China.

"The idea is that one day, if this technique could be used during surgery, it could complement the histopathology, potentially reducing the need for a second breast cancer surgery," said Zhou.

A feasibility study- published in an article in Medical Image Analysis - has yielded promising results: their technique achieved a classification accuracy of over 90%. This means the system correctly identified benign vs. cancerous cells over 90% of the time.

Powerful imaging meets powerful analysis

Zhou's and Huang's method is compelling for its relatively new application of an imaging technique called optical coherence microscopy (OCM) as a breast cancer diagnostic. It is also notable for its innovative approach to training a computer system to recognize texture patterns.

Features extracted from the OCM images are used to train the computer system to automatically identify different tissue types.

"The process takes a large number of images, and labels the types of tissue in the sample," says Huang. "For every pixel in the image, we know whether it is fat, carcinoma or another cell type. In addition, we extract thousands of different features that can be present in the image, such as texture, color or local contrast, and we use a machine learning algorithm to select which features are the most discriminating."

After examining multiple types of texture features, Huang and Zhou determined that Local Binary Pattern (LBP) features--visual descriptors that compares the intensity of a center pixel with those of its neighbors--worked best for classifying tissues imaged by OCM.

The team also integrated two other features--one, called the Average Local Binary Pattern (ALBP), compares the intensity value of each neighbor pixel with the average intensity value of all neighbors: The other one, called the Block-Based Local Binary Pattern (BLBP),compares the average intensity value of pixels in blocks of a certain shape in a neighborhood around the center pixel. Two different shapes of pixel blocks, namely Spoke and Ring, are used in their work.

Finally, because texture patterns of different scales appear in human breast tissue OCM images they constructed a multi-scale feature by integrating LBP, ALBP and BLBP features obtained with different radius parameters. All these combined to significantly improve classification accuracy.

From the article: "Our experiments show that by integrating a selected set of LBP and the two new variant (ALBP and BLBP) features at multiple scales, the classification accuracy increased from 81.7% (using LBP features alone) to 93.8% using a neural network classifier."

"In addition, we used these multi-scale and integrated image features to achieve high sensitivity - 100% - and specificity - 85.2% - for cancer detection using the OCM images," adds Huang.

Zhou, whose work focuses on improving biomedical imaging techniques, is a pioneer in the novel use of OCM, a non-invasive imaging method that can provide 3D, high-reso

ution images of biological tissue at the cellular level. OCM images come very close to what can be detected through histopathology. Huang's role, as an expert in training computers to recognize visual images, is to identify the best way to analyze those images to differentiate between benign and cancerous tissue.

The combination of powerful imaging and powerful image analysis that makes up their technique could be a significant step toward enabling real-time diagnosis of breast cancer tissue in the operating room. The researchers hope it may one day lead to minimizing the need for a second surgery, reducing costs and lowering the risk of complications for patients.
-end-


Lehigh University

Related Breast Cancer Articles:

Partial breast irradiation effective treatment option for low-risk breast cancer
Partial breast irradiation produces similar long-term survival rates and risk for recurrence compared with whole breast irradiation for many women with low-risk, early stage breast cancer, according to new clinical data from a national clinical trial involving researchers from The Ohio State University Comprehensive Cancer Center - Arthur G.
Breast screening linked to 60 per cent lower risk of breast cancer death in first 10 years
Women who take part in breast screening have a significantly greater benefit from treatments than those who are not screened, according to a study of more than 50,000 women.
More clues revealed in link between normal breast changes and invasive breast cancer
A research team, led by investigators from Georgetown Lombardi Comprehensive Cancer Center, details how a natural and dramatic process -- changes in mammary glands to accommodate breastfeeding -- uses a molecular process believed to contribute to survival of pre-malignant breast cells.
Breast tissue tumor suppressor PTEN: A potential Achilles heel for breast cancer cells
A highly collaborative team of researchers at the Medical University of South Carolina and Ohio State University report in Nature Communications that they have identified a novel pathway for connective tissue PTEN in breast cancer cell response to radiotherapy.
Computers equal radiologists in assessing breast density and associated breast cancer risk
Automated breast-density evaluation was just as accurate in predicting women's risk of breast cancer, found and not found by mammography, as subjective evaluation done by radiologists, in a study led by researchers at UC San Francisco and Mayo Clinic.
Blood test can effectively rule out breast cancer, regardless of breast density
A new study published in PLOS ONE demonstrates that Videssa® Breast, a multi-protein biomarker blood test for breast cancer, is unaffected by breast density and can reliably rule out breast cancer in women with both dense and non-dense breast tissue.
Study shows influence of surgeons on likelihood of removal of healthy breast after breast cancer dia
Attending surgeons can have a strong influence on whether a patient undergoes contralateral prophylactic mastectomy after a diagnosis of breast cancer, according to a study published by JAMA Surgery.
Young breast cancer patients undergoing breast conserving surgery see improved prognosis
A new analysis indicates that breast cancer prognoses have improved over time in young women treated with breast conserving surgery.
Does MRI plus mammography improve detection of new breast cancer after breast conservation therapy?
A new article published by JAMA Oncology compares outcomes for combined mammography and MRI or ultrasonography screenings for new breast cancers in women who have previously undergone breast conservation surgery and radiotherapy for breast cancer initially diagnosed at 50 or younger.
Blood test offers improved breast cancer detection tool to reduce use of breast biopsy
A Clinical Breast Cancer study demonstrates Videssa Breast can inform better next steps after abnormal mammogram results and potentially reduce biopsies up to 67 percent.
More Breast Cancer News and Breast Cancer Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.