Nav: Home

A little water could make a big difference for endangered salmon

June 05, 2018

Even small amounts of running water--less than a gallon per second--could mean the difference between life or death for juvenile coho salmon in coastal California streams, according to a new study published in the journal Transactions of the American Fisheries Society.

The study, led by California Sea Grant Extension Specialist Mariska Obedzinski, shows that during dry periods, that amount of water was enough to keep pools interconnected, allowing young salmon to survive through the hot, dry summer months.

"The good news is that if we can get just a little bit of water back in these streams, we can make a really big difference," says Obedzinski, who leads a monitoring program for endangered coho salmon and steelhead in the small streams of Sonoma County that flow into the Russian River.

Saving the Russian River coho

Russian River coho salmon were listed as threatened in 1996, but despite efforts to improve habitat, the species had hit crisis levels by the early 2000's, and they became endangered in 2005 when scientists noted fewer than 10 fish returning to the Russian River each year to spawn. In response, local, state, and federal agencies teamed up to start a conservation hatchery program to breed and release the fish. California Sea Grant's monitoring program was set up to track the success of the hatchery releases as well as better understand the factors that were preventing recovery of the species.

Through their monitoring, Obedzinski and her research team found that low streamflow in summer is one of the biggest bottlenecks to coho recovery. She says, "After the hatchery fish are released, we see them migrating out to the ocean and coming back as adults to spawn. We even see their offspring in creeks in the early summer, but by late summer the creeks dry out, the young salmon die, and the next generation is not surviving."

How much is enough?

Water is a limited resource in the Mediterranean climate of central California. Population growth and development, combined with the impacts of climate change in the drought-prone region have made flow-impaired streams even less reliable.

While previous modeling studies have established water flow thresholds to support salmon in larger, snowmelt-fed streams such as those in California's central valley, the small coastal streams where Russian River coho prefer to spawn are a different beast.

These intermittent streams may swell over their banks during wet winter months but dwindle to a trickle or even dry up in sections during the hot, dry summer. While it was clear that young salmon needed more water to survive the summer months, the question was, how much?

"We didn't have a sense of how much water was needed," says Obedzinski. "The existing models are based on flows in much larger streams. When you try to apply them to our tiny coastal streams, they fall apart."

The new study provides a clearer link between salmon survival and water flow rates in Russian River tributaries, which could be useful for resource agencies and organizations working on salmon recovery, and land owners who want to help restore endangered salmon populations. The findings may also lend support for efforts that might seem small-scale in comparison to larger streamflow improvement projects in other watersheds.

John Green is a project manager for the Gold Ridge Resource Conservation District, who has already begun applying the new research to their work restoring flow in salmon streams. He says, "The big value in this research is that it has given us an idea of how much water is needed to improve fish survival. From that, we start to understand the kinds of projects we need to build and what their impacts will be."

The researchers stress that flows allowing for minimum persistence are not high enough to support full recovery. Obedzinski says, "Keeping a pool connected is the first step in preventing local extinction by keeping at least some of the fish alive, but we want fish to be able to grow and thrive as well. In terms of meeting recovery targets, more water means more habitat for fish, and more chance of bringing back a healthy population."
-end-
About California Sea Grant

NOAA's California Sea Grant College Program funds marine research, education and outreach throughout California. Our headquarters is at Scripps Institution of Oceanography, University of California San Diego; we are one of 33 Sea Grant programs in the National Oceanic and Atmospheric Administration (NOAA), U.S. Department of Commerce. caseagrant.ucsd.edu

About the California Sea Grant Salmon and Steelhead Monitoring Program

For more than a decade, California Sea Grant's Russian River Salmon and Steelhead Monitoring Program has been conducting broad-scale salmon and steelhead monitoring, along with specialized studies, in order to provide science-based information to all stakeholders involved in the recovery of these critical native species. Our program supports the Russian River Coho Salmon Captive Broodstock Program, the statewide Coastal Monitoring Program, the Russian River Coho Water Resources Partnership, and other salmonid recovery efforts throughout the watershed.

University of California - San Diego

Related Fish Articles:

Ten million tonnes of fish wasted every year despite declining fish stocks
Industrial fishing fleets dump nearly 10 million tonnes of good fish back into the ocean every year, according to Sea Around Us research.
Distant fish relatives share looks
James Cook University scientists have found evidence that even distantly related Australian fish species have evolved to look and act like each other, which confirms a central tenet of evolutionary theory.
A fish of all flavors
Japanese researchers achieve atomic resolution images of taste receptors in fish.
Fish step up to lead when predators are near
Researchers from the University of Bristol have discovered that some fish within a shoal take on the responsibilities of leader when they are under threat from predators.
Fish evolve by playing it safe
New research supports the creation of more marine reserves in the world's oceans because, the authors say, fish can evolve to be more cautious and stay away from fishing nets.
Ancient southern China fish may have evolved prior to the 'Age of Fish'
An ancient fish species with unusual scales and teeth from the Kuanti Formation in southern China may have evolved prior to the 'Age of Fish', according to a study published March 8, 2017 in the open-access journal PLOS ONE by Brian Choo from Flinders University, Australia, and colleagues at the Institute of Vertebrate Paleontology and Paleoanthropology, China.
90 percent of fish used for fishmeal are prime fish
A new study emerging from the Sea Around Us project at the University of British Columbia's Institute for the Oceans and Fisheries reveals that from 1950 to 2010, 27 percent of commercial marine landings were diverted to uses other than direct human consumption.
The firefly among fish
The flashlight fish Anomalops katoptron, which inhabits the coral reefs of the Pacific, uses flashing signals to forage for food at night.
A social network for fish
Researchers have won a major new grant award for a study that will help to improve the welfare of live fish used in scientific tests.
Clever fish keep cool
Ocean warming is occurring at such a rapid rate that fish are searching for cooler waters to call home.

Related Fish Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".