Red tide fossils point to Jurassic sea flood

June 05, 2018

Dinosaur-age fossilised remains of tiny organisms normally found in the sea have been discovered in inland, arid Australia - suggesting the area was, for a short time at least, inundated by sea water 40 million years before Australia's large inland sea existed.

The fossils are the egg-like cysts of microorganisms known as dinoflagellates, best known for producing red tides or algal blooms that can turn the sea water blood red. The cysts rest on the sea floor before hatching new dinoflagellates.

Researchers at the University of Adelaide, in collaboration with geological consultancy MGPalaeo, discovered these microfossils in Jurassic rocks of south-western Queensland, near the town of Roma.

Described in the journal Palynology, the fossils have been dated to the late Jurassic period, 148 million years ago. This is a time when Australia was joined to Antarctica, and where dinosaurs roamed across ancient rivers, floodplains and swamps.

"We have plenty of evidence from the 110 million-year-old vast inland Eromanga Sea, which covered a large swathe of central, eastern Australia during the Cretaceous period (following on from the Jurassic)," says Dr Carmine Wainman, Postdoctoral Fellow in the University of Adelaide's Australian School of Petroleum.

"We've seen the opalised fossils sold in Adelaide's Rundle Mall, and the spectacular ancient marine reptiles on display in the South Australian Museum - all from the later Cretaceous period.

"However, this new microfossil evidence from the same region suggests there was a short-lived precursor to this sea 40 million years earlier."

Dr Wainman believes these microfossils must have been brought inland by an incursion of sea water and then evolved quickly to adapt to the freshwater or brackish conditions as the sea waters slowly receded.

"There is no other feasible explanation for how they managed to reach the interior of the Australian continent when the ancient coastline was thousands of kilometres away," Dr Wainman says.

"It was probably a result of rising sea levels during a time of greenhouse conditions before the establishment of the Eromanga Sea. With further investigations, we may find more of these microorganisms or even fossilised marine reptiles that uncover untold secrets about how this part of the world looked in the Jurassic."
-end-
Media Contact:

Dr Carmine Wainman, Postdoctoral Fellow, Australian School of Petroleum, University of Adelaide. Phone: +61 8 8313 8038, Mobile: +61 (0)411 876 173, carmine.wainman@adelaide.edu.au

Robyn Mills, Media Officer, University of Adelaide. Phone: +61 (0)8 8313 6341, Mobile: +61 (0)410 689 084, robyn.mills@adelaide.edu.au

University of Adelaide

Related Microorganisms Articles from Brightsurf:

A more resistant material against microorganisms is created to restore cultural heritage
The study was performed by a research team at the University Research Institute into Fine Chemistry and Nanochemistry at the University of Cordoba and Seville's Institute of Natural Resources and Agrobiology of the Spanish National Research Council

NYUAD study finds gene targets to combat microorganisms binding to underwater surfaces
A group of synthetic biologists at NYU Abu Dhabi (NYUAD) have identified new genetic targets that could lead to safe, biologically-based approaches to combat marine biofouling - the process of sea-based microorganisms, plants, or algae binding to underwater surfaces.

Less flocking behavior among microorganisms reduces the risk of being eaten
When algae and bacteria with different swimming gaits gather in large groups, their flocking behaviour diminishes, something that may reduce the risk of falling victim to aquatic predators.

Are vultures spreaders of microbes that put human health at risk?
A new analysis published in IBIS examines whether bacteria, viruses, and other microorganisms that are present in wild vultures cause disease in the birds, and whether vultures play a role in spreading or preventing infectious diseases to humans and other animal species.

Timing key in understanding plant microbiomes
Oregon State University researchers have made a key advance in understanding how timing impacts the way microorganisms colonize plants, a step that could provide farmers an important tool to boost agricultural production.

Advances in the production of minor ginsenosides using microorganisms and their enzymes
Advances in the Production of Minor Ginsenosides Using Microorganisms and Their Enzymes - BIO Integration https://bio-integration.org/wp-content/uploads/2020/05/bioi20200007.pdf Announcing a new article publication for BIO Integration journal.

Study shows how microorganisms survive in harsh environments
In northern Chile's Atacama Desert, one of the driest places on Earth, microorganisms are able to eke out an existence by extracting water from the rocks they colonize.

Microorganisms in parched regions extract needed water from colonized rocks
Cyanobacteria living in rocks in Chile's Atacama Desert extract water from the minerals they colonize and, in doing so, change the phase of the material from gypsum to anhydrite.

Verticillium wilt fungus killing millions of trees is actually an army of microorganisms
A research project studied the microbiome of olive tree roots and concluded that Verticillium wilt is fueled by a community of microorganisms that team up to attack plants, thus reassessing the way this problem is dealt with

New drug formulation could treat Candida infections
With antimicrobial resistance (AMR) increasing around the world, new research led by the University of Bristol has shown a new drug formulation could possibly be used in antifungal treatments against Candida infections.

Read More: Microorganisms News and Microorganisms Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.