Nav: Home

Red tide fossils point to Jurassic sea flood

June 05, 2018

Dinosaur-age fossilised remains of tiny organisms normally found in the sea have been discovered in inland, arid Australia - suggesting the area was, for a short time at least, inundated by sea water 40 million years before Australia's large inland sea existed.

The fossils are the egg-like cysts of microorganisms known as dinoflagellates, best known for producing red tides or algal blooms that can turn the sea water blood red. The cysts rest on the sea floor before hatching new dinoflagellates.

Researchers at the University of Adelaide, in collaboration with geological consultancy MGPalaeo, discovered these microfossils in Jurassic rocks of south-western Queensland, near the town of Roma.

Described in the journal Palynology, the fossils have been dated to the late Jurassic period, 148 million years ago. This is a time when Australia was joined to Antarctica, and where dinosaurs roamed across ancient rivers, floodplains and swamps.

"We have plenty of evidence from the 110 million-year-old vast inland Eromanga Sea, which covered a large swathe of central, eastern Australia during the Cretaceous period (following on from the Jurassic)," says Dr Carmine Wainman, Postdoctoral Fellow in the University of Adelaide's Australian School of Petroleum.

"We've seen the opalised fossils sold in Adelaide's Rundle Mall, and the spectacular ancient marine reptiles on display in the South Australian Museum - all from the later Cretaceous period.

"However, this new microfossil evidence from the same region suggests there was a short-lived precursor to this sea 40 million years earlier."

Dr Wainman believes these microfossils must have been brought inland by an incursion of sea water and then evolved quickly to adapt to the freshwater or brackish conditions as the sea waters slowly receded.

"There is no other feasible explanation for how they managed to reach the interior of the Australian continent when the ancient coastline was thousands of kilometres away," Dr Wainman says.

"It was probably a result of rising sea levels during a time of greenhouse conditions before the establishment of the Eromanga Sea. With further investigations, we may find more of these microorganisms or even fossilised marine reptiles that uncover untold secrets about how this part of the world looked in the Jurassic."
-end-
Media Contact:

Dr Carmine Wainman, Postdoctoral Fellow, Australian School of Petroleum, University of Adelaide. Phone: +61 8 8313 8038, Mobile: +61 (0)411 876 173, carmine.wainman@adelaide.edu.au

Robyn Mills, Media Officer, University of Adelaide. Phone: +61 (0)8 8313 6341, Mobile: +61 (0)410 689 084, robyn.mills@adelaide.edu.au

University of Adelaide

Related Microorganisms Articles:

Soil scientist researches nature versus nurture in microorganisms
Ember Morrissey, assistant professor of environmental microbiology at West Virginia University, uncovered that nature significantly affects how the tiny organisms under our feet respond to their current surroundings.
Microorganisms reduce methane release from the ocean
Bacteria in the Pacific Ocean remove large amounts of the greenhouse gas methane.
Microorganisms build the best fuel efficient hydrogen cells
With billions of years of practice, nature has created the most energy efficient machines.
How microorganisms protect themselves against free radicals
There are numerous different scenarios in which microorganisms are exposed to highly reactive molecules known as free radicals.
Scientists' warning to humanity: Microbiology and climate change
When it comes to climate change, ignoring the role of microorganisms could have dire consequences, according to a new statement issued by an international team of microbiologists.
Climate change could affect symbiotic relationships between microorganisms and trees
An international research consortium mapped the global distribution of tree-root symbioses with fungi and bacteria that are vital to forest ecosystems.
Microorganisms on microplastics
A recent study shows that that the potentially toxin-producing plankton species Pfiesteria piscicida prefers to colonize plastic particles, where they are found in 50 times higher densities than in the surrounding water of the Baltic Sea and densities about two to three times higher than on comparable wood particles floating in the water.
Harnessing microorganisms for smart microsystems
A research team at the Department of Mechanical Engineering at Toyohashi University of Technology has developed a method to construct a biohybrid system that incorporates Vorticella microorganisms.
Microorganisms are the main emitters of carbon in Amazonian waters
A study performed with microorganisms inhabiting floodplains, which comprises 20 percent of the whole Amazon, showed that the microbial food chain produces 10 times more CO2 than the classical food chain, mostly by decomposing organic matter.
Plant seed research provides basis for sustainable alternatives to chemical fertilizers
Scientists assessed the seed microbiomes of two successive plant generations for the first time and discovered that seeds are an important vector for transmission of beneficial endophytes across generations.
More Microorganisms News and Microorganisms Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab