What effect does transcranial magnetic stimulation have on the brain?

June 05, 2018

Researchers of the Ruhr-Universität Bochum have gained new insights on the question of how transcranial magnetic stimulation (TMS) effects functional interconnectivity of neurones. For visualisation, they employed fluorescent dyes which provide information on the activity of neurones by light. Using this technique, they showed in an animal model that TMS predisposes neuronal connections in the visual cortex of the brain for processes of reorganisation.

TMS is being used as a treatment for a number of brain diseases such as depression, Alzheimer's disease and schizophrenia, but there has been little research on how exactly TMS works. The team of associate professor Dr Dirk Jancke of the Optical Imaging Lab in Bochum describes its new discoveries in the journal Proceedings of the National Academy of Science of the United States of America (PNAS).

Examining the effects on cortical maps in the visual cortex

The researchers have investigated how TMS affects the organisation of so-called orientation maps in the visual part of the brain. Those maps are partly genetically determined and partly shaped by the interaction with our surroundings. In the visual cortex, for example, neurones respond to contrast edges of certain orientations, which typically constitute boundaries of objects. Neurones that preferably respond to edges of a specific orientation are closely grouped while clusters of neurones with other orientation preferences are gradually located further away, altogether forming a systematic map across all orientations.

The team employed high frequency TMS and compared the behaviour of neurones to visual stimuli with a specific angular orientation before and after the procedure. The result: After the magnetic stimulation the neurones responded more variable, that is, their preference for a particular orientation was less pronounced than before the TMS. "You could say that after the TMS the neurones were somewhat undecided and hence, potentially open to new tasks", explains Dirk Jancke. "Therefore, we reasoned that the treatment provides us with a time window for the induction of plastic processes during which neurons can change their functional preference."

A short visual training remodels the maps

The team then looked into the impact of a passive visual training after TMS treatment. 20-minutes of exposure to images of a specific angular orientation led to enlargement of those areas of the brain representing the trained orientation. "Thus, the map in the visual cortex has incorporated the bias in information content of the preceding visual stimulation by changing its layout within a short time," says Jancke. "Such a procedure - that is a targeted sensory or motor training after TMS to modify the brain's connectivity pattern - might be a useful approach to therapeutic interventions as well as for specific forms of sensory-motor training," explains Dirk Jancke.

Methodological challenges

Transcranial magnetic stimulation is a non-invasive painless procedure: A solenoid is being positioned above the head and the brain area in question can be activated or inhibited by means of magnetic waves. So far little is known about the impact of the procedure on a cellular network level, because the strong magnetic field of the TMS superimposes signals that are used by researchers in order to monitor the neuronal effects of the TMS. The magnetic pulse interferes in particular with electrical measurement techniques, such as EEG. In addition, other procedures used in human participants, e.g. functional magnetic resonance imaging, are too slow or their spatial resolution is too low.

Dirk Jancke's team used voltage dependent fluorescent dyes, embedded in the membranes of the neurones, in order to measure the brain's activity after the TMS with high spatiotemporal resolution. As soon as a neurone's activity is modulated, the dye molecules change emission intensity. Light signals therefore provide information about immediate changes in activity of groups of neurones.
-end-


Ruhr-University Bochum

Related Neurons Articles from Brightsurf:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.

Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.

A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.

Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.

Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.

How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.

Read More: Neurons News and Neurons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.