Nav: Home

What the size distribution of organisms tells us about the energetic efficiency of a lake

June 05, 2018

The size distribution of organisms in a lake facilitates robust conclusions to be drawn on the energy efficiency in the food web, as researchers from the Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB) and international colleagues have now demonstrated empirically. This relationship enables scientists to gain a better and more direct understanding of biological processes and disturbances that impact aquatic ecosystems.

Any single habitat is only able to accommodate a certain number of large organisms because these must feed on smaller creatures. In ecology, this connection is described by the trophic transfer efficiency (TTE): around ninety per cent of energy is lost from one level of the food chain to the next or, in other words, only ten per cent remain. If, for example, a bird of prey devours a rabbit, it can use only ten per cent of the energy, which the rabbit needed to grow and live, to increase its own weight - most of the energy, then, is lost. IGB researchers have now examined how large this important model parameter actually is in natural lake ecosystems, and how it relates to the population density of organisms of different size groups. "Of course, investigations have already been carried out into the trophic transfer efficiency and size distribution, but they were on a smaller scale than our study: we analysed all trophic levels, from bacteria to large fish," states Dr. Thomas Mehner, lead author of the study and head of the Food Web Ecology and Fish Communities Research Group at IGB.

Available food is utilised less efficiently than expected

The researchers' study involved investigating food webs in two small, shallow and nutrient-rich lakes in Northern Germany, each of which divided into two closed systems for a period of one year by installing a curtain through the middle of each lake. The long period of division meant that the key groups of organisms developed differently in both halves, enabling the scientists to collect data for a total of four different aquatic ecosystems. The researchers determined the biomass and size of all organisms present in the lakes. In addition, the team computed the trophic transfer efficiency for all levels of the food chain in the lake. To achieve this, they compared primary and bacterial production with secondary production (i.e. the increase in biomass at the consumer level).

"We found out that energy efficiency is lower than is generally assumed: namely, well below ten per cent. In other words, available food is utilised much less efficiently than expected," reports Thomas Mehner. The TTEs determined in all four lake systems were more or less equally low. However, the predictions of the ecological theories with respect to the connection between the TTE and size distribution were confirmed: when the trophic transfer efficiency falls below ten per cent, this corresponds to an increasingly steep declining curve in the model. Consequently, the biomass of the larger organisms also declined more strongly than expected in all four lake halves. For example, the researchers counted considerably fewer consumers in the water than would be expected in the case of a higher TTE.

Using size distribution in lakes as a "tool"

The fact that the relationship between the trophic transfer efficiency and size distribution is stable opens up new possibilities concerning the investigation of aquatic ecosystems. Rather than taking great pains to identify the TTE, it presumably suffices to measure population densities and size distributions. "The trophic transfer efficiency is an important parameter, but we often do not know the size of this parameter. We were able to show that the size distribution, which is easier to determine and more commonly applied, might be sufficient for evaluating the energetic state and efficiency of an ecosystem," Mehner summarises the relevance of the findings. As a result, the size distribution can be used as a "tool" for gaining information such as on the impact of global warming, the invasion of alien species, habitat changes or human exploitation of ecosystem functions.
-end-


Forschungsverbund Berlin

Related Biomass Articles:

Upgrading biomass with selective surface-modified catalysts
Loading single platinum atoms on titanium dioxide promotes the conversion of a plant derivative into a potential biofuel.
A novel biofuel system for hydrogen production from biomass
A recent study, affiliated with South Korea's Ulsan National Institute of Science and Technology (UNIST) has presented a new biofuel system that uses lignin found in biomass for the production of hydrogen.
Biomass fuels can significantly mitigate global warming
'Every crop we tested had a very significant mitigation capacity despite being grown on very different soils and under natural climate variability,' says Dr.
Traditional biomass stoves shown to cause lung inflammation
Traditional stoves that burn biomass materials and are not properly ventilated, which are widely used in developing nations where cooking is done indoors, have been shown to significantly increase indoor levels of harmful PM2.5 (miniscule atmospheric particulates) and carbon monoxide (CO) and to stimulate biological processes that cause lung inflammation and may lead to chronic obstructive pulmonary disease (COPD), according to new research published online in the Annals of the American Thoracic Society.
Biotech breakthrough turns waste biomass into high value chemicals
A move towards a more sustainable bio-based economy has been given a new boost by researchers who have been able to simplify a process to transform waste materials into high value chemicals.
How preprocessing methods affect the conversion efficiency of biomass energy production
Research on energy production from biomass usually focuses on the amount of energy generated.
Supercomputing improves biomass fuel conversion
Pretreating plant biomass with THF-water causes lignin globules on the cellulose surface to expand and break away from one another and the cellulose fibers.
Whole-tree harvesting could boost biomass production
Making the shift to renewable energy sources requires biomass, too.
Left out to dry: A more efficient way to harvest algae biomass
Researchers at the University of Tsukuba develop a new system for evaporating the water from algae biomass with reusable nanoporous graphene, which can lead to cheaper, more environmentally friendly biofuels and fine chemicals.
Symbiotic upcycling: Turning 'low value' compounds into biomass
Kentron, a bacterial symbiont of ciliates, turns cellular waste products into biomass.
More Biomass News and Biomass Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.