Nav: Home

Detecting the birth and death of a phonon

June 05, 2018

Phonons are discrete units of vibrational energy predicted by quantum mechanics that correspond to collective oscillations of atoms inside a molecule or a crystal. When such vibrations are produced by light interacting with a material, the vibrational energy can be transferred back and forth between individual phonons and individual packets of light energy, the photons. This process is called the Raman effect.

In a new study, the lab of Christophe Galland at EPFL's Institute of Physics has developed a technique for measuring, in real time and at room-temperature, the creation and destruction of individual phonons, opening up exciting possibilities in various fields such as spectroscopy and quantum technologies.

The technique uses ultra-short laser pulses, which are bursts of light that last less than 10-13 seconds (a fraction of a trillionth of a second). First, one such pulse is shot onto a diamond crystal to excite a single phonon inside it. When this happens, a partner photon is created at a new wavelength through the Raman effect and is observed with a specialized detector, heralding the success of the preparation step.

Second, to interrogate the crystal and probe the newly created phonon, the scientists fire another laser pulse into the diamond. Thanks to another detector, they now record photons that have reabsorbed the energy of the vibration. These photons are witnesses that the phonon was still alive, meaning that the crystal was still vibrating with exactly the same energy.

This is in strong contradiction with our intuition: we are used to seeing vibrating objects progressively lose their energy over time, like a guitar string whose sound fades away. But in quantum mechanics this is "all or nothing": the crystal either vibrates with a specific energy or it is in its resting state; there is no state allowed in between. The decay of the phonon over time is therefore observed as a decrease of the probability of finding it in the excited state instead of having jumped down to the rest state.

Through this approach, the scientists could reconstruct the birth and death of a single phonon by analyzing the output of the two photon detectors. "In the language of quantum mechanics, the act of measuring the system after the first pulse creates a well-defined quantum state of the phonon, which is probed by the second pulse," says Christophe Galland. "We can therefore map the phonon decay with very fine time resolution by changing the time delay between the pulses from zero to a few trillionths of a second (10-12 seconds or picoseconds)."

The new technique can be applied to many different types of materials, from bulk crystals down to single molecules. It can also be refined to create more exotic vibrational quantum states, such as entangled states where energy is "delocalized" over two vibrational modes. And all this can be performed in ambient conditions, highlighting that exotic quantum phenomena may occur in our daily life - we just need to watch very fast.
-end-
Reference

Mitchell D. Anderson, Santiago Tarrago Velez, Kilian Seibold, Hugo Flayac, Vincenzo Savona, Nicolas Sangouard, Christophe Galland. Two-color pump-probe measurement of photonic quantum correlations mediated by a single phonon. Physical Review Letters 120, 233601 (2018). DOI:10.1103/PhysRevLett.120.233601

Ecole Polytechnique Fédérale de Lausanne

Related Quantum Mechanics Articles:

Understanding mechanics and materials though evolution and biomaterials
Studying the evolution of bodily processes millions of years ago as well as the properties of today's biomaterials could improve soft robotics design and inform materials science research.
USTC realizes the first quantum-entangling-measurements-enhanced quantum orienteering
Researchers enhanced the performance of quantum orienteering with entangling measurements via photonic quantum walks.
A convex-optimization-based quantum process tomography method for reconstructing quantum channels
Researchers from SJTU have developed a convex-optimization-based quantum process tomography method for reconstructing quantum channels, and have shown the validity to seawater channels and general channels, enabling a more precise and robust estimation of the elements of the process matrix with less demands on preliminary resources.
What a pair! Coupled quantum dots may offer a new way to store quantum information
Researchers at the National Institute of Standards and Technology (NIST) and their colleagues have for the first time created and imaged a novel pair of quantum dots -- tiny islands of confined electric charge that act like interacting artificial atoms.
In leap for quantum computing, silicon quantum bits establish a long-distance relationship
In an important step forward in the quest to build a quantum computer using silicon-based hardware, researchers at Princeton have succeeded in making possible the exchange of information between two qubits located relatively far apart -- about the length of a grain of rice, which is a considerable distance on a computer chip.
Artificial intelligence algorithm can learn the laws of quantum mechanics
Artificial intelligence can be used to predict molecular wave functions and the electronic properties of molecules.
A new quantum data classification protocol brings us nearer to a future 'quantum internet'
A new protocol created by researchers at the Universitat Autònoma de Barcelona sorts and classifies quantum data by the state in which they were prepared, with more efficiency than the equivalent classical algorithm.
Bridge between quantum mechanics and general relativity still possible
An international team of researchers developed a unified framework that would account for this apparent break down between classical and quantum physics, and they put it to the test using a quantum satellite called Micius.
'Poor man's qubit' can solve quantum problems without going quantum
Researchers have built and demonstrated the first hardware for a probabilistic computer, a possible way to bridge the gap between classical and quantum computing.
Cracking a decades-old test, researchers bolster case for quantum mechanics
At upcoming FiO + LS conference, researchers will discuss creative tactics to get rid of loopholes that have long confounded tests of quantum mechanics.
More Quantum Mechanics News and Quantum Mechanics Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.