UNH researchers shine a light on more accurate way to estimate climate change

June 05, 2018

DURHAM, N.H. - It doesn't matter if it's a forest, a soybean field, or a prairie, all plants take up carbon dioxide during photosynthesis - the process where they use sunlight to convert water and carbon dioxide into food. During this changeover, the plants emit an energy "glow" that is not visible to the human eye, but can be detected by satellites in space. Now, researchers at the University of New Hampshire have taken that one step further. By using satellite data from different major land-based ecosystems around the globe, they have found that the photosynthesis glow is the same across all vegetation, no matter the location. This first-of-its-kind global analysis could have significance in providing more accurate data for scientists working to model carbon cycle and eventually help better project climate change.

"The importance of these results is that rather than look at several different types of data and computer-based models from information collected on the ground to monitor plant photosynthesis across the globe, using the satellite observations will provide a near real-time option that is simple, reliable and fast," said Jingfeng Xiao, a UNH research associate professor and the principal investigator on the study recently published in the journal Global Change Biology.

Plants across the globe are a major carbon sink helping to remove carbon from the atmosphere during photosynthesis. Because of this, accurate photosynthesis estimates are crucial for scientists who examine ecosystem functions, carbon cycling, and feedbacks to the climate. The challenge has been in the ground-based data scientists previously used to estimate it, including air temperature, solar radiation, precipitation, and other information used in computer-based Earth systems models that focus on the carbon cycle. However, those calculations have large variations that can affect results.

To measure the amount of carbon taken up by plants through photosynthesis, known as gross primary productivity (GPP), scientists have increasingly been measuring the energy glow of plants, called solar-induced fluorescence (SIF). This light that is emitted through the leaf is found at the high end of the light spectrum. While scientists have used this data for specific biomes, or distinct biological communities like a forest or a desert, this study is the first to look at the relationship between ground-based GPP and satellite-observed SIF in different areas across the globe - from grasslands to mixed forests and even areas with sparse vegetation.

Researchers collected the SIF data for plants in eight major biomes, or ecosystem types, from the Orbiting Carbon Observatory-2 (OCO-2) satellite and found that it didn't matter where the plants were, that just like earlier studies in single areas, where there was more SIF, the plants took up more carbon from photosynthesis, and vice versa. Xiao's research establishes this universal relationship across eight major ecosystem types and shows that SIF can indeed serve as a proxy for more time-intensive calculations.

"This is a big step towards being able to solely rely on satellite measurements," said Xiao. "Because it is a very simple model it could help reduce uncertainty in the data, lower computational costs and help better project climate change."

This is the first time the OCO-2 has been used in a global analysis based on SIF observations. In addition, the direct universal relationship revealed in this study allows the estimation of photosynthesis without knowing the ecosystem type. This is especially important for areas of the globe where the satellite might not have reliable, fine-scale data on the vegetation type. Xiao is currently working on developing global SIF estimates for areas ranging on the scale of a few to tens of square kilometers, which he says will be useful for the scientific community studying these topics.
This project was supported by the National Aeronautics and Space Administration (NASA) Carbon Cycle Science Program and Climate Indicators and Data Products for Future National Climate Assessments, the National Science Foundation MacroSystems Biology Program, and the Iola Hubbard Climate Change Endowment.

The University of New Hampshire is a flagship research university that inspires innovation and transforms lives in our state, nation and world. More than 16,000 students from all 50 states and 71 countries engage with an award-winning faculty in top ranked programs in business, engineering, law, liberal arts and the sciences across more than 200 programs of study. UNH's research portfolio includes partnerships with NASA, NOAA, NSF and NIH, receiving more than $100 million in competitive external funding every year to further explore and define the frontiers of land, sea and space.

University of New Hampshire

Related Photosynthesis Articles from Brightsurf:

During COVID, scientists turn to computers to understand C4 photosynthesis
When COVID closed down their lab, a team from the University of Essex turned to computational approaches to understand what makes some plants better adapted to transform light and carbon dioxide into yield through photosynthesis.

E. coli bacteria offer path to improving photosynthesis
Cornell University scientists have engineered a key plant enzyme and introduced it in Escherichia coli bacteria in order to create an optimal experimental environment for studying how to speed up photosynthesis, a holy grail for improving crop yields.

Showtime for photosynthesis
Using a unique combination of nanoscale imaging and chemical analysis, an international team of researchers has revealed a key step in the molecular mechanism behind the water splitting reaction of photosynthesis, a finding that could help inform the design of renewable energy technology.

Photosynthesis in a droplet
Researchers develop an artificial chloroplast.

Even bacteria need their space: Squished cells may shut down photosynthesis
Introverts take heart: When cells, like some people, get too squished, they can go into defense mode, even shutting down photosynthesis.

Marine cyanobacteria do not survive solely on photosynthesis
The University of Cordoba published a study in a journal from the Nature group that supports the idea that marine cyanobacteria also incorporate organic compounds from the environment.

Photosynthesis -- living laboratories
Ludwig-Maximilians-Universitaet (LMU) in Munich biologists Marcel Dann and Dario Leister have demonstrated for the first time that cyanobacteria and plants employ similar mechanisms and key proteins to regulate cyclic electron flow during photosynthesis.

Photosynthesis seen in a new light by rapid X-ray pulses
In a new study, led by Petra Fromme and Nadia Zatsepin at the Biodesign Center for Applied Structural Discovery, the School of Molecular Sciences and the Department of Physics at ASU, researchers investigated the structure of Photosystem I (PSI) with ultrashort X-ray pulses at the European X-ray Free Electron Laser (EuXFEL), located in Hamburg, Germany.

Photosynthesis olympics: can the best wheat varieties be even better?
Scientists have put elite wheat varieties through a sort of 'Photosynthesis Olympics' to find which varieties have the best performing photosynthesis.

Strange bacteria hint at ancient origin of photosynthesis
Structures inside rare bacteria are similar to those that power photosynthesis in plants today, suggesting the process is older than assumed.

Read More: Photosynthesis News and Photosynthesis Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.